2012 journal article

FUTURES: Multilevel Simulations of Emerging Urban-Rural Landscape Structure Using a Stochastic Patch-Growing Algorithm

ANNALS OF THE ASSOCIATION OF AMERICAN GEOGRAPHERS, 103(4), 785–807.

author keywords: fragmentation; land change model; nonstationarity; object-based; region growing algorithm
UN Sustainable Development Goal Categories
11. Sustainable Cities and Communities (OpenAlex)
Source: Web Of Science
Added: August 6, 2018

We present a multilevel modeling framework for simulating the emergence of landscape spatial structure in urbanizing regions using a combination of field-based and object-based representations of land change. The FUTure Urban-Regional Environment Simulation (FUTURES) produces regional projections of landscape patterns using coupled submodels that integrate nonstationary drivers of land change: per capita demand, site suitability, and the spatial structure of conversion events. Patches of land change events are simulated as discrete spatial objects using a stochastic region-growing algorithm that aggregates cell-level transitions based on empirical estimation of parameters that control the size, shape, and dispersion of patch growth. At each time step, newly constructed patches reciprocally influence further growth, which agglomerates over time to produce patterns of urban form and landscape fragmentation. Multilevel structure in each submodel allows drivers of land change to vary in space (e.g., by jurisdiction), rather than assuming spatial stationarity across a heterogeneous region. We applied FUTURES to simulate land development dynamics in the rapidly expanding metropolitan region of Charlotte, North Carolina, between 1996 and 2030, and evaluated spatial variation in model outcomes along an urban–rural continuum, including assessments of cell- and patch-based correctness and error. Simulation experiments reveal that changes in per capita land consumption and parameters controlling the distribution of development affect the emergent spatial structure of forests and farmlands with unique and sometimes counterintuitive outcomes.