2015 journal article

An Examination of Wind Decay, Sustained Wind Speed Forecasts, and Gust Factors for Recent Tropical Cyclones in the Mid-Atlantic Region of the United States

WEATHER AND FORECASTING, 30(1), 153ā€“176.

By: B. Tyner, A. Aiyyer, J. Blaes* & D. Hawkins*

author keywords: Wind; Climatology; Hurricanes; typhoons; Forecast verification; skill; Forecasting techniques; Operational forecasting
Source: Web Of Science
Added: August 6, 2018

Abstract In this study, several analyses were conducted that were aimed at improving sustained wind speed and gust forecasts for tropical cyclones (TCs) affecting coastal regions. An objective wind speed forecast analysis of recent TCs affecting the mid-Atlantic region was first conducted to set a benchmark for improvement. Forecasts from the National Digital Forecast Database were compared to observations and surface wind analyses in the region. The analysis suggests a general overprediction of sustained wind speeds, especially for areas affected by the strongest winds. Currently, National Weather Service Weather Forecast Offices use a software tool known as the Tropical Cyclone Forecast/Advisory (TCM) wind tool (TCMWindTool) to develop their wind forecast grids. The tool assumes linear decay in the sustained wind speeds when interpolating the National Hurricane Center 12ā€“24-hourly TCM product to hourly grids. An analysis of postlandfall wind decay for recent TCs was conducted to evaluate this assumption. Results indicate that large errors in the forecasted wind speeds can emerge, especially for stronger storms. Finally, an analysis of gust factors for recent TCs affecting the region was conducted. Gust factors associated with weak sustained wind speeds are shown to be highly variable but average around 1.5. The gust factors decrease to values around 1.2 for wind speeds above 40 knots (kt; 1 kt = 0.51 m sāˆ’1) and are in general insensitive to the wind direction, suggesting local rather than upstream surface roughness largely dictates the gust factor at a given location. Forecasters are encouraged to increase land reduction factors used in the TCMWindTool and to modify gust factors to account for factors including the sustained wind speed and local surface roughness.