2022 article

Novel Surface Flow-Reversal Sensor Applied to Detection of Airfoil Stall

Aleman, M. A., Gopalarathnam, A., & Granlund, K. (2022, May 13). JOURNAL OF AIRCRAFT.

co-author countries: United States of America 🇺🇸
Source: Web Of Science
Added: May 31, 2022

No AccessEngineering NotesNovel Surface Flow-Reversal Sensor Applied to Detection of Airfoil StallMaria A. Aleman, Ashok Gopalarathnam and Kenneth GranlundMaria A. Aleman https://orcid.org/0000-0001-5538-0299North Carolina State University, Raleigh, North Carolina 27695*Ph.D. Candidate, Department of Mechanical and Aerospace Engineering; . Student Member AIAA.Search for more papers by this author, Ashok Gopalarathnam https://orcid.org/0000-0002-1119-7887North Carolina State University, Raleigh, North Carolina 27695†Professor, Department of Mechanical and Aerospace Engineering; . Associate Fellow AIAA.Search for more papers by this author and Kenneth Granlund https://orcid.org/0000-0002-0108-8038North Carolina State University, Raleigh, North Carolina 27695‡Assistant Professor, Department of Mechanical and Aerospace Engineering; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:15 May 2022https://doi.org/10.2514/1.C036732SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Komerath N. M., Liou S. G., Schwartz R. J. and Kim J. M., “Flow over a Twin-Tailed Aircraft at Angle of Atack, Part I: Spatial Characteristics,” Journal of Aircraft, Vol. 29, No. 3, 1992, pp. 413–420. https://doi.org/10.2514/3.46177 LinkGoogle Scholar[2] Karpovich E., Gueraiche D., Sergeeva N. and Kuznetsov A., “Investigation of a Light Boxplane Model Using Tuft Flow Visualization and CFD,” Fluids, Vol. 6, No. 12, 2021, https://www.mdpi.com/2311-5521/6/12/451 [retrieved 20 Jan. 2022]. https://doi.org/10.3390/fluids6120451 CrossrefGoogle Scholar[3] Dhawan S., “Direct Measurements of Skin Friction,” NASA Rept. 1121, 1953. Google Scholar[4] Brown K. C. and Joubert P. N., “The Measurement of Skin Friction in Turbulent Boundary Layers with Adverse Pressure Gradients,” Journal of Fluid Mechanics, Vol. 35, No. 4, 1969, pp. 737–757. https://doi.org/10.1017/S0022112069001418 CrossrefGoogle Scholar[5] Preston J. H., “The Determination of Turbulent Skin Friction by Means of Pitot Tubes,” Journal of the Royal Aeronautical Society, Vol. 58, No. 518, 1954, pp. 109–121. https://doi.org/10.1017/S0368393100097704 CrossrefGoogle Scholar[6] Head M. R. and Rechenberg I., “The Preston Tube as a Means of Measuring Skin Friction,” Journal of Fluid Mechanics, Vol. 14, No. 1, 1962, p. 1–17. https://doi.org/10.1017/S0022112062001020 CrossrefGoogle Scholar[7] Ackerman J. D., Wong L., Ethier C. R., Allen D. G. and Spelt J. K., “Preston-Static Tubes for the Measurement of Wall Shear Stress,” Journal of Fluids Engineering, Vol. 116, Sept. 1994, pp. 645–649. https://doi.org/10.1115/1.2910326 CrossrefGoogle Scholar[8] Liu C., Huang J.-B., Zhu Z., Jiang F., Tung S., Tai Y.-C. and Ho C.-M., “A Micromachined Flow Shear-Stress Sensor Based on Thermal Transfer Principles,” Journal of Microelectromechanical Systems, Vol. 8, No. 1, 1999, pp. 90–99. https://doi.org/10.1109/84.749408 CrossrefGoogle Scholar[9] Gupta R. P., “New Device for Skin-Friction Measurement in Three-Dimensional Flows,” AIAA Journal, Vol. 13, No. 2, 1975, pp. 236–238. https://doi.org/10.2514/3.49676 LinkGoogle Scholar[10] Bertelrud A., “Total Head/Static Measurements of Skin Friction and Surface Pressure,” AIAA Journal, Vol. 15, No. 3, 1977, pp. 436–438. https://doi.org/10.2514/3.7337 LinkGoogle Scholar[11] Hua D., Suzuki H. and Mochizuki S., “Shear Stress Vector Measurement Using a Circular Sublayer Plate with Multiple Pressure Taps,” AIAA Journal, Vol. 56, No. 6, 2018, pp. 2138–2144. https://doi.org/10.2514/1.J056794 LinkGoogle Scholar[12] Buder U., Petz R., Kittel M., Nitsche W. and Obermeier E., “AeroMEMS Polyimide Based Wall Double Hot-Wire Sensors for Flow Separation Detection,” Sensors and Actuators A: Physical, Vol. 142, No. 1, 2008, pp. 130–137. https://doi.org/10.1016/j.sna.2007.04.058 CrossrefGoogle Scholar[13] Sturm H., Dumstorff G., Westermann D. and Lang W., “Boundary Layer Separation and Reattachment Detection on Airfoils by Thermal Flow Sensors,” Journal of Sensors, Vol. 12, No. 11, 2012, pp. 14,292–14,306. CrossrefGoogle Scholar[14] Rudmin D., Benaissa A. and Poirel D., “Detection of Laminar Flow Separation and Transition on a NACA-0012 Airfoil Using Surface Hot-Films,” Journal of Fluids Engineering, Vol. 135, Aug. 2013, Paper 101104. https://doi.org/10.1115/1.4024807 CrossrefGoogle Scholar[15] Lee T. and Basu S., “Measurement of Unsteady Boundary Layer Developed on an Oscillating Airfoil Using Multiple Hot-Film Sensors,” Experiments in Fluids, Vol. 25, No. 2, 1998, pp. 108–117. https://doi.org/10.1007/s003480050214 CrossrefGoogle Scholar[16] Breuer K., “MEMS Sensors for Aerodynamic Measurements—The Good, The Bad (and the Ugly),” AIAA Paper 2000-0251, 2000. LinkGoogle Scholar[17] Gnanamanickam E. P., Nottebrock B., Große S., Sullivan J. P. and Schröder W., “Measurement of Turbulent Wall Shear-Stress Using Micro-Pillars,” Measurement Science and Technology, Vol. 24, No. 12, 2013, Paper 124002. https://doi.org/10.1088/0957-0233/24/12/124002 CrossrefGoogle Scholar[18] Große S. and Schröder W., “Dynamic Wall-Shear Stress Measurements in Turbulent Pipe Flow Using the Micro-Pillar Sensor MPS 3,” International Journal of Heat and Fluid Flow, Vol. 29, No. 3, 2008, pp. 830–840. https://doi.org/10.1016/j.ijheatfluidflow.2008.01.008 CrossrefGoogle Scholar[19] Ehlert G. J., Maschmann M. R. and Baur J. W., “Electromechanical Behavior of Aligned Carbon Nanotube Arrays for Bio-Inspired Fluid Flow Sensors,” SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Soc. for Optics and Photonics, Bellingham, WA, 2011, Paper 79771C. Google Scholar[20] Pozrikidis C., “Shear Flow Over Cylindrical Rods Attached to a Substrate,” Journal of Fluids and Structures, Vol. 26, No. 3, 2010, pp. 393–405. https://doi.org/10.1016/j.jfluidstructs.2010.01.008 CrossrefGoogle Scholar[21] Phillips D. M., Ray C. W., Hagen B. J., Su W., Baur J. W. and Reich G. W., “Detection of Flow Separation and Stagnation Points Using Artificial Hair Sensors,” Smart Materials and Structures, Vol. 24, No. 11, 2015, Paper 115026. https://doi.org/10.1088/0964-1726/24/11/115026 CrossrefGoogle Scholar[22] Kim T., Saini A., Kim J., Gopalarathnam A., Zhu Y., Palmieri F. L., Wohl C. J. and Jiang X., “A Piezoelectric Shear Stress Sensor,” SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring, International Soc. for Optics and Photonics, Bellingham, WA, 2016, Paper 98032S. Google Scholar[23] Roche D., Richard C., Eyraud L. and Audoly C., “Piezoelectric Bimorph Bending Sensor for Shear-Stress Measurement in Fluid Flow,” Sensors and Actuators A: Physical, Vol. 55, No. 2, 1996, pp. 157–162. https://doi.org/10.1016/S0924-4247(97)80072-6 CrossrefGoogle Scholar[24] Dagamseh A., Wiegerink R., Lammerink T. and Krijnen G., “Towards a High-Resolution Flow Camera Using Artificial Hair Sensor Arrays for Flow Pattern Observations,” Bioinspiration and Biomimetics, Vol. 7, No. 4, 2012, Paper 046009. https://doi.org/10.1088/1748-3182/7/4/046009 CrossrefGoogle Scholar[25] Dijkstra M., Van Baar J., Wiegerink R., Lammerink T., De Boer J. and Krijnen G., “Artificial Sensory Hairs Based on the Flow Sensitive Receptor Hairs of Crickets,” Journal of Micromechanics and Microengineering, Vol. 15, No. 7, 2005, Paper S132. https://doi.org/10.1088/0960-1317/15/7/019. CrossrefGoogle Scholar[26] Chen N., Tucker C., Engel J. M., Yang Y., Pandya S. and Liu C., “Design and Characterization of Artificial Haircell Sensor for Flow Sensing with Ultrahigh Velocity and Angular Sensitivity,” Journal of Microelectromechanical Systems, Vol. 16, No. 5, 2007, pp. 999–1014. https://doi.org/10.1109/JMEMS.2007.902436 CrossrefGoogle Scholar[27] Driver D. M. and Drake A., “Skin-Friction Measurements Using Oil-Film Interferometry in NASA’s 11-Foot Transonic Wind Tunnel,” AIAA Journal, Vol. 46, No. 10, 2008, pp. 2401–2407. https://doi.org/10.2514/1.7570 LinkGoogle Scholar[28] Baldwin A., Mears L. J., Arora N., Kumar R., Alvi F. S. and Naughton J. W., “Skin Friction Measurements Using Oil Film Interferometry in a 3–D Supersonic Flowfield,” AIAA Journal, Vol. 57, No. 4, 2019, pp. 1373–1382. https://doi.org/10.2514/1.J057388 LinkGoogle Scholar[29] Costantini M., Fuchs C., Henne U., Christian K., Ondruš V., Bruse M., Löhr M. and Jacobs M., “Experimental Analysis of the Performance of a Wind-Turbine Airfoil Using Temperature-Sensitive Paint,” AIAA Journal, Vol. 59, No. 11, 2021, pp. 4449–4464. https://doi.org/10.2514/1.J060039 LinkGoogle Scholar[30] Smith S. C., “Use of Shear-Sensitive Liquid Crystals for Surface Flow Visualization,” Journal of Aircraft, Vol. 29, No. 2, 1992, pp. 289–293. https://doi.org/10.2514/3.46157 LinkGoogle Scholar[31] Marks C., Sondergaard R. and Wolff M., “Surface Stress Sensitive Film as a Separation Control Sensor,” 50th AIAA Aerospace Sciences Meeting, Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2012-0746, 2012. LinkGoogle Scholar[32] Durbin E. and McGeer T., “An Airspeed Vector Sensor for V/STOL Aircraft,” Journal of Aircraft, Vol. 19, No. 6, 1982, pp. 449–455. https://doi.org/10.2514/3.57415 LinkGoogle Scholar[33] Hoadley A. W. and VanderBok R. S., “Stall Margin Indication,” Journal of Aircraft, Vol. 25, No. 4, 1988, pp. 380–383. https://doi.org/10.2514/3.45574 LinkGoogle Scholar[34] Greff E., “In-Flight Measurement of Static Pressures and Boundary-Layer State with Integrated Sensors,” Journal of Aircraft, Vol. 28, No. 5, 1991, pp. 289–299. https://doi.org/10.2514/3.46027 LinkGoogle Scholar[35] Whitmore S. A., Davis R. J. and Fife J. M., “In-Flight Demonstration of a Real-Time Flush Airdata Sensing System,” Journal of Aircraft, Vol. 33, No. 5, 1996, pp. 970–977. https://doi.org/10.2514/3.47043 LinkGoogle Scholar[36] Patel M. P., Sowle Z. H., Corke T. C. and He C., “Autonomous Sensing and Control of Wing Stall Using a Smart Plasma Slat,” Journal of Aircraft, Vol. 44, No. 2, 2007, pp. 516–527. https://doi.org/10.2514/1.24057 LinkGoogle Scholar[37] Poggie J., Tilmann C. P., Flick P. M., Silkey J. S., Osbourne B. A., Ervin G., Maric D., Mangalam S. and Mangalam A., “Closed-Loop Stall Control System,” Journal of Aircraft, Vol. 47, No. 5, 2010, pp. 1747–1755. https://doi.org/10.2514/1.C000262 LinkGoogle Scholar[38] Cox C., Gopalarathnam A. and Hall C. E., “Flight Test of Stable Automated Cruise Flap for an Adaptive Wing Aircraft,” Journal of Aircraft, Vol. 47, No. 4, 2010, pp. 1178–1188. https://doi.org/10.2514/1.46789 LinkGoogle Scholar[39] Shen H., Xu Y. and Remeikas C., “Pitch Control of a Micro Air Vehicle with Micropressure Sensors,” Journal of Aircraft, Vol. 50, No. 1, 2013, pp. 239–248. https://doi.org/10.2514/1.C031894 LinkGoogle Scholar[40] Mohamed A., Watkins S., Fisher A., Marino M., Massey K. and Clothier R., “Bioinspired Wing-Surface Pressure Sensing for Attitude Control of Micro Air Vehicles,” Journal of Aircraft, Vol. 52, No. 3, 2015, pp. 827–838. https://doi.org/10.2514/1.C032805 LinkGoogle Scholar[41] Mark A., Xu Y. and Dickinson B. T., “Review of Microscale Flow-Sensor-Enabled Mechanosensing in Small Unmanned Aerial Vehicles,” Journal of Aircraft, Vol. 56, No. 3, 2019, pp. 962–973. https://doi.org/10.2514/1.C034979 LinkGoogle Scholar[42] Araujo-Estrada S. A. and Windsor S. P., “Aerodynamic State and Loads Estimation Using Bioinspired Distributed Sensing,” Journal of Aircraft, Vol. 58, No. 4, 2021, pp. 704–716. https://doi.org/10.2514/1.C036224 LinkGoogle Scholar[43] Saini A. and Gopalarathnam A., “Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation,” AIAA Journal, Vol. 56, No. 12, 2018, pp. 4706–4718. https://doi.org/10.2514/1.J057327 LinkGoogle Scholar[44] Leishman J. G. and Beddoes T., “A Semi-Empirical Model for Dynamic Stall,” Journal of the American Helicopter Society, Vol. 34, No. 3, 1989, pp. 3–17. CrossrefGoogle Scholar[45] Goman M. and Khrabrov A., “State-Space Representation of Aerodynamic Characteristics of an Aircraft at High Angles of Attack,” Journal of Aircraft, Vol. 31, No. 5, 1994, pp. 1109–1115. https://doi.org/10.2514/3.46618 LinkGoogle Scholar[46] Liu Z., Lai J. C. S., Young J. and Tian F.-B., “Discrete Vortex Method with Flow Separation Corrections for Flapping-Foil Power Generators,” AIAA Journal, Vol. 55, No. 2, 2017, pp. 410–418. https://doi.org/10.2514/1.J055267 LinkGoogle Scholar[47] Narsipur S., Gopalarathnam A. and Edwards J. R., “Low-Order Model for Prediction of Trailing-Edge Separation in Unsteady Flow,” AIAA Journal, Vol. 57, No. 1, 2019, pp. 191–207. https://doi.org/10.2514/1.J057132 LinkGoogle Scholar[48] Barlow J. B., Rae W. H. and Pope A., Low-Speed Wind Tunnel Testing, 3rd ed., Wiley, New York, 1999, pp. 196–197, 224–227. Google Scholar[49] “Objet30 3D Printer,” Stratasys, Rehovot, MN, 2018, http://www.stratasys.com/3d-printers/objet30-pro [retrieved 8 July 2018]. Google Scholar[50] Drela M., “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” Low Reynolds Number Aerodynamics, Springer, Berlin, 1989, pp. 1–12. CrossrefGoogle Scholar[51] Velmex, “Computer Optimized Stepper Motor Operating System (COSMOS),” 2016, https://www.velmex.com/Technical/Software.html [accessed 15 July 2017]. Google Scholar[52] Anderson J. D., Fundamentals of Aerodynamics, 5th ed., McGraw–Hill, New York, 2010, pp. 381–384. Google Scholar[53] Lyon C. A., Broeren A. P., Giguere P., Gopalarathnam A. and Selig M. S., Summary of Low-Speed Airfoil Data—Volume 3, SoarTech Publ., Virginia Beach, VA, 1998, pp. 14–17. Google Scholar[54] Lyon C. A., Selig M. S. and Broeren A. P., “Boundary Layer Trips on Airfoils at Low Reynolds Numbers,” 35th Aerospace Sciences Meeting and Exhibit, AIAA Paper 1997-0511, 1997. https://doi.org/10.2514/6.1997-511 LinkGoogle Scholar[55] Beck T., Payne G. and Heitman T., “The Aerodynamics of the Pitot-Static Tube and Its Current Role in Non-Ideal Engineering Applications,” 2010 Annual Conference and Exposition, American Soc. for Engineering Education, Washington, D.C., 2010, Paper 15.1204. Google Scholar Previous article Next article FiguresReferencesRelatedDetails What's Popular Volume 59, Number 5September 2022 CrossmarkInformationCopyright © 2022 by Maria A. Aleman, Ashok Gopalarathnam, and Kenneth Granlund. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3868 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamic PerformanceAerodynamicsAeronautical EngineeringAeronauticsAviationAviation SafetyAvionicsFlight TestGuidance, Navigation, and Control SystemsPressure SensorsSensorsSkin FrictionTransducersTurbulenceWind Tunnels KeywordsFlow SensorsAirfoilWind Tunnel TestsLift CoefficientBoundary Layer SeparationAdverse Pressure GradientAerodynamic CharacteristicsTwo Dimensional FlowShear StressStatic PressurePDF Received28 October 2021Accepted4 April 2022Published online15 May 2022