2022 journal article

Computational Investigation of Beryllium and Lithium Performance in Future Fusion Tokamaks

New Energy Exploitation and Application, 1(1).

By: N. Elbasha*, M. Bourham‚ÄČ & B. Mohamed*

Source: ORCID
Added: July 1, 2022

Low-z materials are exemplary candidates in tiling critical plasma-facing components in future fusion reactors due to their low ablation rates under intense high heat fluxes especially during abnormal and hard disruption events. Beryllium and Lithium as low-z materials show good performance as plasma-facing materials in current tokamak. Future tokamaks will exhibit long duration hard disruptions, which in turn requires further investigation of plasma-facing materials, as Li and Be, to judge their performance and evaluate their erosion rates. Electrothermal plasma capillary discharges are used to simulate the high-heat flux deposition on materials to assess their erosion rates. The electrothermal plasma code ETFLOW, which is written for capillary discharges to predict the plasma parameters and erosion rates is used to simulate the high-heat flux conditions similar to expected disruption events for simulated heat fluxes from as low as ~50 to as high as ~290 GW/m2 with a reconnoitering of generating the Be and Li plasmas up to the third ionization (Br+++, Li+++). Performance of Be and Li under the lowest capillary discharge currents (50 kA and 100 kA) is almost identical, however, Li shows sharper increase in the plasma pressure, heat flux, total ablated mass and the exit velocities than Be for higher discharge currents (150, 200 and 250 kA). This huge difference between the performance of Li and Be under low and high heat fluxes can be an important issue for the future magnetic fusion reactors.