2022 journal article

A new generation of effective core potentials from correlated and spin-orbit calculations: Selected heavy elements

JOURNAL OF CHEMICAL PHYSICS, 157(5).

UN Sustainable Development Goals Color Wheel
UN Sustainable Development Goal Categories
15. Life on Land (OpenAlex)
Source: Web Of Science
Added: August 15, 2022

We introduce new correlation consistent effective core potentials (ccECPs) for the elements I, Te, Bi, Ag, Au, Pd, Ir, Mo, and W with 4d, 5d, 6s, and 6p valence spaces. These ccECPs are given as a sum of spin-orbit averaged relativistic effective potential (AREP) and effective spin-orbit (SO) terms. The construction involves several steps with increasing refinements from more simple to fully correlated methods. The optimizations are carried out with objective functions that include weighted many-body atomic spectra, norm-conservation criteria, and SO splittings. Transferability tests involve molecular binding curves of corresponding hydride and oxide dimers. The constructed ccECPs are systematically better and in a few cases on par with previous effective core potential (ECP) tables on all tested criteria and provide a significant increase in accuracy for valence-only calculations with these elements. Our study confirms the importance of the AREP part in determining the overall quality of the ECP even in the presence of sizable spin-orbit effects. The subsequent quantum Monte Carlo calculations point out the importance of accurate trial wave functions that, in some cases (mid-series transition elements), require treatment well beyond a single-reference.