2019 conference paper

Broadband energy harvesting performance of a piezoelectrically generated bistable laminate

Conference Proceedings of the Society for Experimental Mechanics Series, (213429), 1–14.

By: A. Lee* & D. Inman*

co-author countries: United States of America 🇺🇸

Contributors: A. Lee* & D. Inman*

Source: ORCID
Added: August 17, 2022

The vibration based energy harvesting performance of a piezoelectrically generated bistable laminate consisting of only Macro Fiber Composites (MFC) is experimentally characterized. Conventionally, piezoelectric transducers are bonded onto thermally induced bistable composite laminates and exhibit broadband cross-well dynamics that are exploited for improved power generation over linear resonant harvesters. Recently, a novel method of inducing bistability was proposed by bonding two actuated MFCs in a [0 MFC ∕90 MFC ] T layup and releasing the voltage post cure to create in-plane residual stresses and yield two cylindrically stable configurations. Forward and backward frequency sweeps at multiple acceleration levels across the first two observed modes of the laminate’s two states are performed to identify all dynamic regimes and the corresponding voltages produced by each MFC. Besides single-well oscillations, snap throughs are observed in intermittencies, subharmonic, chaotic, and limit cycle oscillations across wide frequency ranges. Resistor sweeps are conducted for each regime to determine maximum power outputs, and single and multi-frequency performance metrics accounting for laminate volume, mass, input accelerations, and frequencies are evaluated for the laminate. A performance comparison with conventional bistable composite harvesters demonstrate the laminate’s viability for energy harvesting, allowing it to be multi-functional in combination with its snap through morphing capability.