2021 article

TULVCAN: Terahertz Ultra-broadband Learning Vehicular Channel-Aware Networking


By: C. Lin n, S. Lin n & E. Blasch*

co-author countries: United States of America 🇺🇸
Source: Web Of Science
Added: September 6, 2022

Due to spectrum scarcity and increasing wireless capacity demands, terahertz (THz) communications at 0.1-10THz and the corresponding spectrum characterization have emerged to meet diverse service requirements in future 5G and 6G wireless systems. However, conventional compressed sensing techniques to reconstruct the original wideband spectrum with under-sampled measurements become inefficient as local spectral correlation is deliberately omitted. Recent works extend communication methods with deep learning-based algorithms but lack strong ties to THz channel properties. This paper introduces novel THz channel-aware spectrum learning solutions that fully disclose the uniqueness of THz channels when performing such ultra-broadband sensing in vehicular environments. Specifically, a joint design of spectrum compression and reconstruction is proposed through a structured sensing matrix and two-phase reconstruction based on high spreading loss and molecular absorption at THz frequencies. An end-to-end learning framework, namely compression and reconstruction network (CRNet), is further developed with the mean-square-error loss function to improve sensing accuracy while significantly reducing computational complexity. Numerical results show that the CRNet solutions outperform the latest generative adversarial network (GAN) realization with a much higher cosine and structure similarity measures, smaller learning errors, and 56% less required training overheads. This THz Ultra-broadband Learning Vehicular Channel-Aware Networking (TULVCAN) work successfully achieves effective THz spectrum learning and hence allows frequency-agile access.