@article{budhlall_marquez_velev_2008, title={Microwave, Photo- and Thermally Responsive PNIPAm-Gold Nanoparticle Microgels}, volume={24}, ISSN={["0743-7463"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-55549140819&partnerID=MN8TOARS}, DOI={10.1021/la8019556}, abstractNote={Microwave-, photo- and thermo-responsive polymer microgels that range in size from 500 to 800 microm and are swollen with water were prepared by a novel microarray technique. We used a liquid-liquid dispersion technique in a system of three immiscible liquids to prepare hybrid PNIPAm- co-AM core-shell capsules loaded with AuNPs. The spontaneous encapsulation is a result of the formation of double oil-in-water-in-oil (o/w/o) emulsion. It is facilitated by adjusting the balance of the interfacial tensions between the aqueous phase (in which a water-soluble drug may be dissolved), the monomer phase and the continuous phase. The water-in-oil (w/o) droplets containing 26 wt% NIPAm and Am monomers, 0.1 wt% Tween-80 surfactant, FITC fluorescent dye and colloidal gold nanoparticles spontaneously developed a core-shell morphology that was fixed by in situ photopolymerization. The results demonstrate new reversibly swelling and deswelling AuNP/PNIPAm hybrid core-shell microcapsules and microgels that can be actuated by visible light and/or microwave radiation (