@article{nichols_musella_2009, title={Differences in PAH desorption and sediment organic matter composition between non-vegetated and recently vegetated fuel-oiled sediments}, volume={11}, DOI={10.1080/15226510802656128}, abstractNote={We assessed the desorption behavior of pyrene, chrysene, phenanthrene, and tri-alkylated (C3) phenanthrene/anthracenes for non-vegetated and recently vegetated (< 2 yrs) fuel-oiled sediments collected from the Indiana Harbor Canal (IHC), Gary, IN. Bulk sediment and humin were analyzed for PAH concentrations, organic matter composition, and PAH desorption behavior. PAH desorption isotherms and kinetics were determined using batch aqueous extractions and a two compartment, first-order kinetic model. Vegetated sediments contained more plant carbon and were more nonpolar and less oxidized than non-vegetated sediments. Desorption kinetics indicated that PAH desorption was primarily controlled by a slow PAH-desorbing fraction (F2) of IHC sediments. However, in vegetated sediments, particularly humin, PAH release from a faster PAH-desorbing fraction (F1) increased as did the rates (k2) of PAH desorption from the dominant slow PAH-desorbing fraction (F2). We propose that vegetation provides aliphatic, nonpolar carbon to IHC sediments that facilitates more rapid PAH desorption from bulk sediment and humin.}, journal={International Journal of Phytoremediation}, author={Nichols, Elizabeth and Musella, J.}, year={2009}, pages={463–478} } @article{nichols_gregory_musella_2008, title={The impact of vegetation on sedimentary organic matter composition and PAH desorption}, volume={156}, ISSN={["0269-7491"]}, DOI={10.1016/j.envpol.2008.05.011}, abstractNote={Relationships between sedimentary organic matter (SOM) composition and PAH desorption behavior were determined for vegetated and non-vegetated refinery distillate waste sediments. Sediments were fractionated into size, density, and humin fractions and analyzed for their organic matter content. Bulk sediment and humin fractions differed more in organic matter composition than size/density fractions. Vegetated humin and bulk sediments contained more polar organic carbon, black carbon, and modern (plant) carbon than non-vegetated sediment fractions. Desorption kinetics of phenanthrene, pyrene, chrysene, and C(3)-phenanthrene/anthracenes from humin and bulk sediments were investigated using Tenax beads and a two-compartment, first-order kinetic model. PAH desorption from distillate waste sediments appeared to be controlled by the slow desorbing fractions of sediment; rate constants were similar to literature values for k(slow) and k(very slow). After several decades of plant colonization and growth (Phragmites australis), vegetated sediment fractions more extensively desorbed PAHs and had faster desorption kinetics than non-vegetated sediment fractions.}, number={3}, journal={ENVIRONMENTAL POLLUTION}, author={Nichols, Elizabeth Guthrie and Gregory, Samuel T. and Musella, Jennifer S.}, year={2008}, month={Dec}, pages={928–935} }