@article{palmer_gehl_ranney_touchell_george_2014, title={Biomass yield, nitrogen response, and nutrient uptake of perennial bioenergy grasses in North Carolina}, volume={63}, ISSN={["1873-2909"]}, DOI={10.1016/j.biombioe.2014.02.016}, abstractNote={Although perennial grasses show considerable potential as candidates for lignocellulosic bioenergy production, these crops exhibit considerable variation in regional adaptability and yield. Giant miscanthus (Miscanthus × giganteus Greef & Deuter), Miscanthus sinensis Anderss. 'Gracillimus' and MH2006, plume grass (Saccharum arundinaceum Retz.), ravenna grass (Saccharum ravennae (L.) L.), switchgrass (Panicum virgatum L. 'Alamo'), and giant reed (Arundo donax L.) field plots were established in 2008, treated with four nitrogen (N) fertilizer rates (0, 34, 67, 134 kg ha−1 y−1), and harvested annually in winter from 2008 to 2011. Giant reed, 'Gracillimus', switchgrass, MH2006, giant miscanthus and ravenna grass at the Mountain site produced mean dry matter yields of 22.8, 21.3, 20.9, 19.3, 18.4, and 10.0 Mg ha−1 y−1, respectively (averaged over the last two years). Dry matter yields at the Coastal site for giant reed, giant miscanthus, switchgrass, ravenna grass, and 'Gracillimus' were 27.4, 20.8, 20.1, 14.3, and 9.4 Mg ha−1 y−1, respectively (averaged over the last two years). Increasing N rates up to 134 kg N ha−1 did not have a consistent significant effect on biomass production. High yields coupled with high mortality for plume grass at both sites indicates its potential as a bioenergy crop and need for continued improvement. Overall, the perennial grasses in this study had low nutrient removal, although giant reed and plume grass often removed significantly more N, P, K and S compared with Miscanthus spp. and switchgrass. Our results indicate that giant reed, giant miscanthus, and switchgrass are productive bioenergy crops across geographic regions of North Carolina.}, journal={BIOMASS & BIOENERGY}, author={Palmer, Irene E. and Gehl, Ronald J. and Ranney, Thomas G. and Touchell, Darren and George, Nic}, year={2014}, month={Apr}, pages={218–228} } @article{palmer_ranney_lynch_bir_2009, title={Crossability, cytogenetics, and reproductive pathways in Rudbeckia subgenus Rudbeckia}, volume={44}, DOI={10.21273/HORTSCI.44.1.44}, abstractNote={Rudbeckia L. are valuable nursery crops that offer broad adaptability and exceptional ornamental merit. However, there is little information on interspecific and interploid crossability and ploidy levels of specific cultivars. The objectives of this study were to determine the ploidy levels and relative DNA contents (genome sizes) of selected species and cultivars, to evaluate self-compatibility and crossability among species and ploidy levels, and to explore reproductive pathways in triploid R. hirta L. with the goal of facilitating future breeding endeavors and development of new hybrids. Reciprocal interspecific crosses were performed between R. hirta cultivars and R. fulgida Ait., R. missouriensis Engelm. ex C.L. Boynton & Beadle, and R. subtomentosa Pursh. as well as reciprocal interploid crosses among four R. hirta cultivars. A combination of relative DNA content analysis and chromosome counts was used to test for hybridity and to determine ploidy levels for selected species, cultivars, and interploid R. hirta F1 hybrids. Of the specific clones tested, R. subtomentosa and R. missouriensis were diploid, R. fuligida varieties were tetraploid, and R. hirta include both diploid and tetraploid cultivars. Mean 1Cx DNA content varied over 320% among species. The interploid R. hirta crosses produced triploids as well as pentaploids and hexaploids. Seedlings from open-pollinated triploid R. hirta appeared, based on diverse phenotypes and DNA contents, to be aneuploids resulting from sexual fertilization, not apomixis. Of the 844 seedlings from interspecific F1 crosses, only one individual, R. subtomentosa ×R. hirta, had a DNA content intermediate between its parents and was confirmed as the only interspecific hybrid. Although most taxa had low self-fertility, seedlings (with genomic sizes similar to their maternal parent) resulted after interspecific crosspollination, indicating that pseudogamy is one reproductive pathway in Rudbeckia species.}, number={1}, journal={HortScience}, author={Palmer, I. E. and Ranney, T. G. and Lynch, N. P. and Bir, R. E.}, year={2009}, pages={44–48} }