@article{sarac_anderson_pearce_railsback_oni_white_hensley_lebeau_melechko_tracy_2013, title={Airbrushed Nickel Nanoparticles for Large-Area Growth of Vertically Aligned Carbon Nanofibers on Metal (Al, Cu, Ti) Surfaces}, volume={5}, ISSN={["1944-8244"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000330016500022&KeyUID=WOS:000330016500022}, DOI={10.1021/am401889t}, abstractNote={Vertically aligned carbon nanofibers (VACNFs) were grown by plasma-enhanced chemical vapor deposition (PECVD) using Ni nanoparticle (NP) catalysts that were deposited by airbrushing onto Si, Al, Cu, and Ti substrates. Airbrushing is a simple method for depositing catalyst NPs over large areas that is compatible with roll-to-roll processing. The distribution and morphology of VACNFs are affected by the airbrushing parameters and the composition of the metal foil. Highly concentrated Ni NPs in heptane give more uniform distributions than pentane and hexanes, resulting in more uniform coverage of VACNFs. For VACNF growth on metal foils, Si micropowder was added as a precursor for Si-enriched coatings formed in situ on the VACNFs that impart mechanical rigidity. Interactions between the catalyst NPs and the metal substrates impart control over the VACNF morphology. Growth of carbon nanostructures on Cu is particularly noteworthy because the miscibility of Ni with Cu poses challenges for VACNF growth, and carbon nanostructures anchored to Cu substrates are desired as anode materials for Li-ion batteries and for thermal interface materials.}, number={18}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Sarac, Mehmet F. and Anderson, Bryan D. and Pearce, Ryan C. and Railsback, Justin G. and Oni, Adedapo A. and White, Ryan M. and Hensley, Dale K. and LeBeau, James M. and Melechko, Anatoli V. and Tracy, Joseph B.}, year={2013}, month={Sep}, pages={8955–8960} } @article{pearce_railsback_anderson_sarac_mcknight_tracy_melechko_2013, title={Transfer of Vertically Aligned Carbon Nanofibers to Polydimethylsiloxane (PDMS) While Maintaining their Alignment and Impalefection Functionality}, volume={5}, ISSN={["1944-8252"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000315079700055&KeyUID=WOS:000315079700055}, DOI={10.1021/am302501z}, abstractNote={Vertically aligned carbon nanofibers (VACNFs) are synthesized on Al 3003 alloy substrates by direct current plasma-enhanced chemical vapor deposition. Chemically synthesized Ni nanoparticles were used as the catalyst for growth. The Si-containing coating (SiN(x)) typically created when VACNFs are grown on silicon was produced by adding Si microparticles prior to growth. The fiber arrays were transferred to PDMS by spin coating a layer on the grown substrates, curing the PDMS, and etching away the Al in KOH. The fiber arrays contain many fibers over 15 μm (long enough to protrude from the PDMS film and penetrate cell membranes) and SiN(x) coatings as observed by SEM, EDX, and fluorescence microscopy. The free-standing array in PDMS was loaded with pVENUS-C1 plasmid and human brain microcapillary endothelial (HBMEC) cells and was successfully impalefected.}, number={3}, journal={ACS APPLIED MATERIALS & INTERFACES}, author={Pearce, Ryan C. and Railsback, Justin G. and Anderson, Bryan D. and Sarac, Mehmet F. and McKnight, Timothy E. and Tracy, Joseph B. and Melechko, Anatoli V.}, year={2013}, month={Feb}, pages={878–882} } @article{railsback_singh_pearce_mcknight_collazo_sitar_yingling_melechko_2012, title={Weakly Charged Cationic Nanoparticles Induce DNA Bending and Strand Separation}, volume={24}, ISSN={["0935-9648"]}, url={https://publons.com/wos-op/publon/5454547/}, DOI={10.1002/adma.201104891}, abstractNote={Weakly charged cationic nanoparticles cause structural changes including local denaturing and compaction to DNA under mild conditions. The charged ligands bind to the phosphate backbone of DNA and the uncharged ligands penetrate the helix and disrupt base pairing. Mobility shifts in electrophoresis, molecular dynamics, and UV-vis spectrophotometry give clues to the details of the interactions.}, number={31}, journal={ADVANCED MATERIALS}, publisher={Wiley-Blackwell}, author={Railsback, Justin G. and Singh, Abhishek and Pearce, Ryan C. and McKnight, Timothy E. and Collazo, Ramon and Sitar, Zlatko and Yingling, Yaroslava G. and Melechko, Anatoli V.}, year={2012}, month={Aug}, pages={4261-+} } @article{clearfield_railsback_pearce_hensley_fowlkes_fuentes-cabrera_simpson_rack_melechko_2010, title={Reactive solid-state dewetting of Cu-Ni films on silicon}, volume={97}, number={25}, journal={Applied Physics Letters}, author={Clearfield, R. and Railsback, J. G. and Pearce, R. C. and Hensley, D. K. and Fowlkes, J. D. and Fuentes-Cabrera, M. and Simpson, M. L. and Rack, P. D. and Melechko, A. V.}, year={2010} } @article{railsback_johnston-peck_wang_tracy_2010, title={Size-Dependent Nanoscale Kirkendall Effect During the Oxidation of Nickel Nanoparticles}, volume={4}, ISSN={["1936-086X"]}, url={http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=ORCID&SrcApp=OrcidOrg&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=WOS:000276956800020&KeyUID=WOS:000276956800020}, DOI={10.1021/nn901736y}, abstractNote={The transformation of Ni nanoparticles (NPs) of different sizes (average diameters of 9, 26, and 96 nm) during oxidation to hollow (single void) or porous (multiple voids) NiO through the nanoscale Kirkendall effect was observed by transmission electron microscopy. Samples treated for 1-4 h at 200-500 degrees C show that the structures of the completely oxidized NPs do not depend on the temperature, but oxidation proceeds more quickly at elevated temperatures. For the Ni/NiO system, after formation of an initial NiO shell (of thickness approximately 3 nm), single or multiple voids nucleate on the inner surface of the NiO shell, and the voids grow until conversion to NiO is complete. Differences in the void formation and growth processes cause size-dependent nanostructural evolution: For 9 and 26 nm NPs, a single void forms beneath the NiO shell, and the void grows by moving across the NP while conversion to NiO occurs opposite the site where the void initially formed. Because of the differences in the Ni/NiO volume ratios for the 9 and 26 nm NPs when the void first forms, they have distinct nanostructures: The 9 nm NPs form NiO shells that are nearly radially symmetric, while there is a pronounced asymmetry in the NiO shells for 26 nm NPs. By choosing an intermediate oxidation temperature and varying the reaction time, partially oxidized Ni(core)/NiO(shell) NPs can be synthesized with good control. For 96 nm NPs, multiple voids form and grow, which results in porous NiO NPs.}, number={4}, journal={ACS NANO}, author={Railsback, Justin G. and Johnston-Peck, Aaron C. and Wang, Junwei and Tracy, Joseph B.}, year={2010}, month={Apr}, pages={1913–1920} }