@article{morsello_beaudoin_groves_nault_kennedy_2010, title={The influence of temperature and precipitation on spring dispersal of Frankliniella fusca changes as the season progresses}, volume={134}, ISSN={["1570-7458"]}, DOI={10.1111/j.1570-7458.2009.00959.x}, abstractNote={Abstract}, number={3}, journal={ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA}, author={Morsello, Shannon C. and Beaudoin, Amanda L. P. and Groves, Russell L. and Nault, Brian A. and Kennedy, George G.}, year={2010}, month={Mar}, pages={260–271} } @article{groves_walgenbach_moyer_kennedy_2003, title={Seasonal dispersal patterns of Frankliniella fusca (Thysanoptera : Thripidae) and tomato spotted wilt virus occurrence in central and eastern North Carolina}, volume={96}, ISSN={["1938-291X"]}, DOI={10.1603/0022-0493-96.1.1}, abstractNote={Abstract The seasonal abundance and temporal pattern of Frankliniella fusca Hinds dispersal were monitored from 1996 to 2000 at 12 locations in central and eastern North Carolina. The predominant vector species of tomato spotted wilt virus (TSWV) captured across all locations was F. fusca (98%). The temporal patterns of F. fusca dispersal observed during spring seasons varied among locations in all years except 2000. Regression analysis estimated that times of first flight in the spring seasons varied among locations, whereas flight duration intervals were similar. Temporal patterns of F. fusca captured varied significantly between aerial traps placed 0.1 and 1.0 m above the soil surface. Fewer total thrips were captured at 0.1 m, although thrips dispersal occurred earlier and over a greater time interval compared with 1.0-m traps. Temporal patterns of TSWV occurrence differed among locations in the spring seasons of 1999 and 2000, whereas patterns of virus occurrence were similar during the fall seasons. Patterns of F. fusca dispersal and subsequent TSWV occurrence were synchronous at locations in 1999 and 2000 where the greatest number of TSWV lesions was recorded. Knowledge of the temporal patterns of F. fusca dispersal and TSWV occurrence may be a useful indicator for describing the time when susceptible crops are at highest risk of TSWV infection.}, number={1}, journal={JOURNAL OF ECONOMIC ENTOMOLOGY}, author={Groves, RL and Walgenbach, JF and Moyer, JW and Kennedy, GG}, year={2003}, month={Feb}, pages={1–11} } @article{groves_walgenbach_moyer_kennedy_2002, title={The role of weed hosts and tobacco thrips, Frankliniella fusca, in the epidemiology of Tomato spotted wilt virus}, volume={86}, ISSN={["1943-7692"]}, DOI={10.1094/PDIS.2002.86.6.573}, abstractNote={ Wild plant species were systematically sampled to characterize reproduction of thrips, the vector of Tomato spotted wilt virus (TSWV), and natural sources TSWV infection. Thrips populations were monitored on 28 common perennial, biennial, and annual plant species over two noncrop seasons at six field locations across North Carolina. Sonchus asper, Stellaria media, and Taraxacum officianale consistently supported the largest populations of immature TSWV vector species. The tobacco thrips, Frankliniella fusca, was the most abundant TSWV vector species collected, comprising over 95% of vector species in each survey season. Perennial plant species (i.e., Plantago rugelii and Taraxacum officianale) were often only locally abundant, and many annual species (Cerastium vulgatum, Sonchus asper, and Stellaria media) were more widely distributed. Perennial species, including P. rugelii and Rumex crispus, remained TSWV infected for 2 years in a small-plot field test. Where these perennial species are locally abundant, they may serve as important and long-lasting TSWV inoculum sources. In random surveys across 12 locations in North Carolina, TSWV infection was documented by double antibody sandwich enzyme-linked immunosorbent assay in 35 of 72 (49%) common perennial (N = 10), biennial (N = 4), and annual (N = 21) plant species across 18 plant families. Estimated rates of TSWV infection were highest in Cerastium vulgatum (4.2%), Lactuca scariola (1.3%), Molluga verticillata (4.3%), Plantago rugelii (3.4%), Ranunculus sardous (3.6%), Sonchus asper (5.1%), Stellaria media (1.4%), and Taraxacum officianale (5.8%). Nine plant species were determined to be new host recordings for TSWV infection, including Cardamine hirsuta, Eupatorium capillifolium, Geranium carolinianum, Gnaphalium purpureum, Linaria canadense, Molluga verticillata, Pyrrhopappus carolinianus, Raphanus raphanistrum, and Triodanis perfoliata. Our findings document the relative potential of a number of common annual, biennial, and perennial plant species to act as important reproductive sites for F. fusca and as acquisition sources of TSWV for spread to susceptible crops. }, number={6}, journal={PLANT DISEASE}, author={Groves, RL and Walgenbach, JF and Moyer, JW and Kennedy, GG}, year={2002}, month={Jun}, pages={573–582} } @article{groves_sorenson_walgenbach_kennedy_2001, title={Effects of imidacloprid on transmission of tomato spotted wilt tospovirus to pepper, tomato and tobacco by Frankliniella fusca Hinds (Thysanoptera : Thripidae)}, volume={20}, ISSN={["0261-2194"]}, DOI={10.1016/S0261-2194(00)00171-X}, abstractNote={Abstract Rates of transmission of tomato spotted wilt tospovirus (TSWV) by tobacco thrips, Frankliniella fusca Hinds, to imidacloprid-treated and untreated tomato, pepper and tobacco were measured in greenhouse and small-plot field trials. The incidence of TSWV was reduced in greenhouse assays with all 3 crops receiving a soil application of imidacloprid at a rate of 9.9 g [AI]/1000 plants. Levels of TSWV were also reduced in small-plot field trials of tomato and pepper plants receiving transplant applications of imidacloprid at the same rate. No F. fusca were recovered from imidacloprid-treated tobacco (9.9 g [AI]/1000 plants) 24 days following an initial infestation. In the greenhouse, F. fusca populations reached higher levels on healthy than TSWV-infected tobacco. Applications of soil-applied imidacloprid reduced the number and duration of probing/feeding bouts by F. fusca on pepper and mustard (Brassica rapa L.). Reduced probing and feeding by viruliferous thrips on imidacloprid-treated plants may contribute to less TSWV incidence as observed in the field and greenhouse experiments.}, number={5}, journal={CROP PROTECTION}, author={Groves, RL and Sorenson, CE and Walgenbach, JF and Kennedy, GG}, year={2001}, month={Jun}, pages={439–445} } @article{groves_walgenbach_moyer_kennedy_2001, title={Overwintering of Frankliniella fusca (Thysanoptera : Thripidae) on winter annual weeds infected with Tomato spotted wilt virus and patterns of virus movement between susceptible weed hosts}, volume={91}, ISSN={["1943-7684"]}, DOI={10.1094/PHYTO.2001.91.9.891}, abstractNote={Overwintering of tobacco thrips, Frankliniella fusca, was investigated on common winter annual host plants infected with Tomato spotted wilt virus (TSWV). Populations of tobacco thrips produced on TSWV-infected plants did not differ from those produced on healthy plants, whereas populations varied greatly among host plant species. The mean per plant populations of F. fusca averaged 401, 162, and 10 thrips per plant on Stellaria media, Scleranthus annuus, and Sonchus asper, respectively, during peak abundance in May. Adult F. fusca collected from plant hosts were predominately brachypterous throughout the winter and early spring, but macropterous forms predominated in late spring. Weed hosts varied in their ability to serve as overwintering sources of TSWV inoculum. Following the initial infection by TSWV in October 1997, 75% of Scleranthus annuus and Stellaria media retained infection over the winter and spring season, whereas only 17% of Sonchus asper plants remained infected throughout the same interval. Mortality of TSWV-infected Sonchus asper plants exceeded 25%, but mortality of infected Stellaria media and Scleranthus annuus did not exceed 8%. TSWV transmission by thrips produced on infected plants was greatest on Stellaria media (18%), intermediate on Scleranthus annuus (6%), and lowest on Sonchus asper (2%). Very few viruliferous F. fusca were recovered from soil samples collected below infected wild host plants. Vegetative growth stages of Stellaria media, Sonchus asper, and Ranunculus sardous were more susceptible to F. fusca transmission of TSWV than flowering growth stages, whereas both growth stages of Scleranthus annuus were equally susceptible. In a field study to monitor the spatial and temporal patterns of virus movement from a central source of TSWV-infected Stellaria media to adjacent plots of R. sardous, the incidence of infection in R. sardous plots increased from <1% in March to >42% in June 1999. Infection levels in the Stellaria media inoculum source remained high throughout the experiment, averaging nearly 80% until June 1999 when all Stellaria media plants had senesced. Dispersal of TSWV from the inoculum source extended to the limits of the experimental plot (>37 m). Significant directional patterns of TSWV spread to the R. sardous plots were detected in April and May but not in June. R. sardous infections were detected as early as March and April, suggesting that overwintering inoculum levels in an area can increase rapidly during the spring in susceptible weed hosts prior to planting of susceptible crops. This increase in the abundance of TSWV inoculum sources occurs at a time when vector populations are increasing rapidly. The spread of TSWV among weeds in the spring serves to bridge the period when overwintered inoculum sources decline and susceptible crops are planted.}, number={9}, journal={PHYTOPATHOLOGY}, author={Groves, RL and Walgenbach, JF and Moyer, JW and Kennedy, GG}, year={2001}, month={Sep}, pages={891–899} } @article{faircloth_bradley_van duyn_groves_2001, title={Reproductive success and damage potential of tobacco thrips and western flower thrips on cotton seedlings in a greenhouse environment}, volume={18}, number={3}, journal={Journal of Agricultural and Urban Entomology}, author={Faircloth, J. C. and Bradley, J. R. and Van Duyn, J. W. and Groves, R. L.}, year={2001}, pages={179–185} } @article{groves_kennedy_walgenbach_1998, title={Inoculation of tomato spotted wilt virus into cotton}, volume={82}, number={8}, journal={Plant Disease}, author={Groves, R. L. and Kennedy, G. G. and Walgenbach, J. F.}, year={1998}, pages={959} }