@article{hu_cuevas-uribe_yang_sanderson_gill_daniels_tiersch_2016, title={High-throughput Cryopreservation of Sperm from Sex-reversed Southern Flounder, Paralichthys lethostigma}, volume={47}, ISSN={["1749-7345"]}, DOI={10.1111/jwas.12293}, abstractNote={The Southern flounder, Paralichthys lethostigma, is a valuable aquaculture fish with established markets in the USA. All-female production in this species is an important technology for aquaculture because the females usually have body sizes twice those of males at the same age, and sex-reversed males (genotypic XX neomales) are used for all-female production by crossing with genetically normal females. However, sperm volume from the neomales is usually small (<0.5 mL) and limits their application for all-female fish production. Cryopreservation of sperm from these sex-reversed neomales will provide access on demand with increased efficiency to extend the application of neomales. The goal of this study was to develop a protocol for cryopreservation of sperm from the Southern flounder by using an automated high-throughput processing system. The objectives were to: (1) determine the effect of osmolality on activation of sperm motility; (2) evaluate the effect of extender solutions on sperm motility capacity; (3) evaluate the acute toxicity of cryoprotectants (dimethyl sulfoxide [DMSO], propylene glycol, and polyethylene glycol) on sperm motility, and (4) estimate the effect of cooling rate on sperm cryopreservation and post-thaw fertilization. Sperm motility was activated when osmolality was 400 mOsmol/kg or higher. Of the three extender buffers tested, HEPES4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) at 300 mOsmol/kg resulted in better protection for sperm motility than did Hanks' balanced salt solution and Mounib solution at 300 mOsmol/kg during 7 d of refrigerated storage. After 30 min equilibration with the cryoprotectant of 15% DMSO, sperm motility was 24 ± 21% (fresh sperm motility without any cryoprotectants was 42%). After cooling at a rate of 20 C/min, post-thaw sperm motility was 8 ± 5% and fertilization was 63 ± 40% evaluated at the 32–64 cell stage (5 × 105 sperm per egg). Overall, a protocol was developed for sperm cryopreservation in the Southern flounder with high-throughput processing, which provides a tool to preserve the valuable genetic resources from neomale flounders, and enables germplasm repository development for the Southern flounder.}, number={4}, journal={JOURNAL OF THE WORLD AQUACULTURE SOCIETY}, author={Hu, E. and Cuevas-Uribe, Rafael and Yang, Huiping and Sanderson, Robin and Gill, Adriane O. and Daniels, Harry and Tiersch, Terrence R.}, year={2016}, month={Aug}, pages={555–565} } @article{drake_drake_sanderson_daniels_yates_2010, title={THE EFFECT OF PURGING TIME ON THE SENSORY PROPERTIES OF AQUACULTURED SOUTHERN FLOUNDER (PARALICHTHYS LETHOSTIGMA)}, volume={25}, ISSN={["1745-459X"]}, DOI={10.1111/j.1745-459x.2009.00255.x}, abstractNote={This study was conducted to determine the impact of purging on the sensory flavor properties and consumer acceptance of aquacultured southern flounder, especially with regard to earthy/musty off-flavor common in aquacultured seafood. Flounders were placed into three different purge tanks based on salinity level (0, 15 and 30 ppt) and were held for 0, 2 or 4 weeks. Flounders were then filleted, vacuum-sealed and frozen at −20C. The fillets were poached in their vacuum-sealed pouches until cooked. Descriptive sensory analysis was conducted using a defined sensory lexicon (appearance and flavor) to document sensory properties. Consumer acceptance testing (n = 75 consumers) was then conducted. Differences between treatments were evaluated by analysis of variance with means separation. Two or four weeks of purging, regardless of salinity level, decreased earthy/musty off-flavor in cooked fillets. There was no difference in salty taste perception between 15 and 30 ppt salinity (P < 0.05). Consumers could not differentiate between fish purged for 2 or 4 weeks (P < 0.05), and acceptance for purged fillets was higher than acceptance for unpurged fillets (P < 0.05). The use of purging tanks for aquacultured flounder will be beneficial to the industry to guarantee a consistent and desirable flavor. PRACTICAL APPLICATIONS Aquacultured flounder fillets are highly desirable and a potentially profitable product, but earthy/musty off flavor can limit consumer appeal. The results of our study demonstrate that purging flounder in fresh water for 2 weeks reduces earthy/musty off-flavor in cooked flounder fillets, and will help meet the goal of a high-quality and consistently flavored product.}, number={2}, journal={JOURNAL OF SENSORY STUDIES}, author={Drake, S. L. and Drake, M. A. and Sanderson, R. and Daniels, H. V. and Yates, M. D.}, year={2010}, month={Apr}, pages={246–259} }