@article{sokolowska_hinks_freeman_2001, title={Synthesis and evaluation of organic pigments. 3. Studies based on nonmutagenic twisted benzidines}, volume={48}, ISSN={["0143-7208"]}, DOI={10.1016/S0143-7208(00)00088-7}, abstractNote={Bis-chromophoric pigments prepared using nonmutagenic benzidine analogs with high dihedral angle across the biphenyl linkage are reported. The mutagenic properties of twisted bisazomethine, disazoacetoacetanilide, disazopyrazolone, disazobenzimidazolone and disazonaphthol pigments were established using the standard Ames Salmonella mammalian mutagenicity assay and the Prival modification. Results from these tests and from the evaluation of hue, color strength and photostability of the pigments prepared are reported. Some of the new pigments are potential viable alternatives to those derived from 3,3′-dichlorobenzidine and other genotoxic analogs of benzidine.}, number={1}, journal={DYES AND PIGMENTS}, author={Sokolowska, J and Hinks, D and Freeman, HS}, year={2001}, month={Jan}, pages={15–27} } @article{hinks_freeman_nakpathom_sokolowska_2000, title={Synthesis and evaluation of organic pigments and intermediates. 1. Nonmutagenic benzidine analogs}, volume={44}, ISSN={["0143-7208"]}, DOI={10.1016/S0143-7208(99)00078-9}, abstractNote={The design, synthesis, characterization, and genotoxicity of 4,4′ diaminobiphenyl (benzidine) analogs with substituents in the 3,3′ and/or 2,2′ positions are reported. Analogs containing bulky substituents in the 3,3′ positions significantly reduce or eliminate mutagenic activity, while substituents in the 2,2′-positions increase the dihedral angle across the biphenyl linkage––a property that can be utilized in the design of novel nonmutagenic colorants. 2,2′-Dimethylbenzidine was found to be mutagenic in both the standard Salmonella mammalian mutagenicity assay (Ames test) with metabolic acitivation and the preincubation assay protocol. 2,2′-Dichloro-5,5′-dipropoxybenzidine, 2,2′-dimethoxy-5,5′-dipropoxybenzidine and 2,2′-dimethyl-5,5′-dipropoxybenzidine were nonmutagenic in both assays. The corresponding bis-acetoacetamido derivatives of the latter two compounds were also nonmutagenic. Good yields with minimal purification were obtained for certain diamines, providing potentially useful nongenotoxic intermediates in the synthesis of bisazo and bisazomethine dyes and pigments.}, number={3}, journal={DYES AND PIGMENTS}, author={Hinks, D and Freeman, HS and Nakpathom, M and Sokolowska, J}, year={2000}, month={Feb}, pages={199–207} } @misc{freeman_sokolowska_1999, title={Developments in dyestuff chemistry}, DOI={10.1111/j.1478-4408.1999.tb00123.x}, abstractNote={Review of Progress in Coloration and Related TopicsVolume 29, Issue 1 p. 8-22 Developments in dyestuff chemistry Harold S Freeman, Harold S Freeman Ciba-Geigy professor at North Carolina State University, Raleigh, North Carolina, USA.Search for more papers by this authorJolanta Sokolowska, Jolanta Sokolowska Vice-dean at the Technical University of Lodz.Search for more papers by this author Harold S Freeman, Harold S Freeman Ciba-Geigy professor at North Carolina State University, Raleigh, North Carolina, USA.Search for more papers by this authorJolanta Sokolowska, Jolanta Sokolowska Vice-dean at the Technical University of Lodz.Search for more papers by this author First published: 23 October 2008 https://doi.org/10.1111/j.1478-4408.1999.tb00123.xCitations: 39AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat REFERENCES 1 Hoechst, Mitsubishi, Japanese P 95 97 532 (1995). Google Scholar 2 Bayer, European P Appl. 733 679 (1996). Google Scholar 3 Ciba–Geigy, Int. P Appl. WO 9 625 549 (1996). Google Scholar 4 Sumitomo, Japanese P 10 183000 (1998). Google Scholar 5 Sumitomo, Japanese P 10 182999 (1998). Google Scholar 6 Hoechst, European P Appl. 668 328 (1995). Google Scholar 7 Daisutaa, Japanese P 96 209 021 (1996). Google Scholar 8 DyStar, European P Appl. 735 111 (1996). Google Scholar 9 BASF, German P 19 509 956 (1996). Google Scholar 10 Daisutaa, Japanese P 96 08 903 (1996). Google Scholar 11 BASF, German P 19 648 939 (1998). Google Scholar 12 Hoechst, Celanese, USP 5 532 362 (1996). Google Scholar 13 Hoechst, European P Appl. 697 443 (1996). Google Scholar 14 Hoechst, German P 4 415 692 (1996). Google Scholar 15 DyStar, European P Appl. 848 042 (1998). Google Scholar 16 DyStar, European P Appl. 714 956 (1996). Google Scholar 17 Bayer, German P 4 343 454 (1996). Google Scholar 18 Sumitomo, Japanese P 96 48 893 (1996). Google Scholar 19 Sumitomo, European P Appl. 640 667 (1996). Google Scholar 20 Mitsui, Japanese P 10 158 531 (1998). Google Scholar 21 Qinyan, Chinese P 1144 823 (1998). Google Scholar 22 Mitsui Toatsu, Japanese P 95 48 520 (1995). Google Scholar 23 Mitsubishi, Japanese P 96 143865 (1996). Google Scholar 24 Mitsubishi, Japanese P 96 67 822 (1996). Google Scholar 25 Mitsubishi, Japanese P 95 247 480 (1995). Google Scholar 26 Hitachi, Mitsubishi, Japanese P 95 292 364 (1995). Google Scholar 27 Mitsui Toatsu, Japanese P 95 252 423 (1995). Google Scholar 28 Mitsubishi, Japanese P 97 124 958 (1997). Google Scholar 29 Toshiba, Japanese P 97 87 630 (1997). Google Scholar 30 Ricoh, Japanese P 95 104 429 (1995). Google Scholar 31 Mitsubishi, European P Appl. 656 407 (1995). Google Scholar 32 Mitsubishi, Japanese P 10 01 633 (1998). Google Scholar 33 Ilford, PCT Int. Appl. WO 96 24 635 (1996). Google Scholar 34 Zeneca, PCT Int. Appl. WO 98 12 264 (1998). Google Scholar 35 Zeneca, USP 5 759 247 (1998). Google Scholar 36 Zeneca, PCT Int. Appl. WO 98 27 165 (1998). Google Scholar 37 Ilford, PCT Int. Appl. WO 96 24 636 (1996). Google Scholar 38 Clariant, German P 19 640 182 (1998). Google Scholar 39 Canon, Japanese P 10 140 063 (1998). Google Scholar 40 Nippon, Japanese P 95 76 587 (1995). Google Scholar 41 Fuji, Japanese P 96 156 430 (1996). Google Scholar 42 Shinoji Seishi, Japanese P 96 282 129 (1996). Google Scholar 43 Shinoji Seishi, Japanese P 96 267 929 (1996). Google Scholar 44 Shinoji Seishi, Japanese P 96 267 912 (1996). Google Scholar 45 Shinoji Seishi, Japanese P 96 207 438 (1996). Google Scholar 46 Shinoji Seishi, Japanese P 96 142 502 (1996). Google Scholar 47 Ricoh, Japanese P 95 181 692 (1995). Google Scholar 48 Ricoh, Japanese P 95 199 492 (1995). Google Scholar 49 Ricoh, Japanese P 9 324 129 (1998). Google Scholar 50 Mita Industrial, Japanese P 95 146 570 (1995). Google Scholar 51 Mita Industrial, Japanese P 95 146 571 (1995). Google Scholar 52 Japanese P 95 146 572 (1995). Google Scholar 53 Japanese P 95 146 573 (1995). Google Scholar 54 Japanese P 95 104 491 (1995). Google Scholar 55 Mita Industrial, Japanese P 95 992707 (1995). Google Scholar 56 Mita Industrial, Japanese P 95 92708 (1995). Google Scholar 57 Konishiroku Photo, Japanese P 96 15 881 (1996). Google Scholar 58 Konishiroku Photo, Japanese P96 06 277 (1996). Google Scholar 59 Konishiroku Photo, Japanese P 96 06 278 (1996). Google Scholar 60 Fuji, Japanese P 95 319 189 (1996). Google Scholar 61 Matsushita Electric, Japanese P 97 43875 (1997). Google Scholar 62 Minolta, Japanese P96 262 799 (1996). Google Scholar 63 Mitsubishi, Japanese P 96 152 745 (1996). Google Scholar 64 Mitsubishi, Japanese P96 166 689 (1996). Google Scholar 65 Mitsubishi, Japanese P96 123 088 (1996). Google Scholar 66 Zeneca, BP Appl. 2 312 433 (1998). Google Scholar 67 Polaroid, USP 5 691458 (1998). Google Scholar 68 Ricoh, Japanese P 95114 218 (1995). Google Scholar 69 Ricoh, Japanese P96 123 096 (1996). Google Scholar 70 Kao Corp., Japanese P96 262 800 (1996). Google Scholar 71 Kao Corp., Jap P96 262 802 (1996). Google Scholar 72 TDK, Japanese P 94 320 869 (1994). Google Scholar 73 Asahi Chemical, Japanese P 95 70 453 (1995). Google Scholar 74 Ricoh, Japanese P 97 01934 (1997). Google Scholar 75 Nippon, Japanese P 95 186 530 (1995). Google Scholar 76 Canon, Japanese P96 187 940 (1996). Google Scholar 77 Ricoh, Japanese P 96 02 107 (1996). Google Scholar 78 Mitsui Toatsu Chemicals, Yamamoto Chemicals, European P Appl. 719839(1996). Google Scholar 79 Pioneer, Japanese P 95 125 434 (1995). Google Scholar 80 Idemitsu Petrochemical, Ricoh Japanese P (1996). AUTHOR – PLS CHECK!!!!. Google Scholar 81 Sony, Japanese P 96 58 235 (1996). Google Scholar 82 TDK, Japanese P 95 268 227 (1996). Google Scholar 83 Mitsui Toatsu, Japanese P 96 151 530 (1996). Google Scholar 84 Mitsui Toatsu, Japanese P 97 123 601 (1997). Google Scholar 85 TDK, Japanese P 95 126 543 (1995). Google Scholar 86 Canon, Japanese P 95 25 152 (1995). Google Scholar 87 V G Yadav, Colourage, 45 (1) (1998) 53. Google Scholar 88 J Sokolowska–Gajda, H S Freeman and A Reife, Text. Res. J., 64 (7) (1994) 388. 10.1177/004051759406400704 CASWeb of Science®Google Scholar 89 NC State University, USP 5 376151 (1994). Google Scholar 90 H S Freeman, J Sokolowska–Gajda and A Reife, Dyes and Pigments, 30 (1)(1996) 1. 10.1016/0143-7208(95)00048-8 Web of Science®Google Scholar 91 NC State University, USP 5 677 434 (1997). Google Scholar 92 H A Bardole, H S Freeman and A Reife, Text. Res. J., 68 (2) (1998) 141. 10.1177/004051759806800210 Web of Science®Google Scholar 93 W Czajkowski and M Szymczyk, Dyes and Pigments, 37 (3) (1998) 197. 10.1016/S0143-7208(97)00055-7 Web of Science®Google Scholar 94 Clariant, PCT Int. Appl. WO 98 05 717 (1998). Google Scholar 95 Clariant, PCT Int. Appl. WO 97 43 344 (1998). Google Scholar 96 J Lye, H S Freeman, A F Schreiner and J Sokolowska–Gajda, Proc. Colour Science 98 Conf., Harrogate (March 1998). Google Scholar 97 D M Lewis and J Yao, AATCC Int. Conf. and Exhib., Book of Papers (1998) 375. Google Scholar 98 Y C Chao, M J Chang and C H Chung, Dyes and Pigments, 39 (3) (1998) 183. 10.1016/S0143-7208(98)00009-6 Web of Science®Google Scholar 99 D M Lewis and P J Broadbent, J. S. D. C, 113 (1997) 159. 10.1111/j.1478-4408.1997.tb01890.x CASWeb of Science®Google Scholar 100 Novo Nordisk, USP 5770 418 (1998). Google Scholar 101 University of Minnesota Biocatalysis/Biodegradation Database: http:www.labmed.umn.eduumbbdindex.html. Google Scholar 102 C B Smith, NC State University, personal communication. Google Scholar 103 Technische Universitaet Dresden, German P19 650 252 (1998). Google Scholar 104 A S Ozcan, A A Clifford, K D Bartle and D M Lewis, Dyes and Pigments, 36 (2) (1998) 103. 10.1016/S0143-7208(97)00005-3 CASWeb of Science®Google Scholar 105 C A Lajeuness and S F Rice, Chem. Oxid., 5 (1997) 13. Google Scholar 106 S N Joung and K–P Yoo, J. Chem. Eng. Data, 43 (1) (1998) 9. 10.1021/je9701285 CASWeb of Science®Google Scholar 107 T Bechtold, A Turcanu, E Burtscher and O Bobleter, Textilvcredlung, 32 (9/10) (1997) 204. Google Scholar 108 T Bechtold, E Burtscher and A Turcanu, Text. Chem. Colorist, 30 (8) (1997) 72. Web of Science®Google Scholar 109 G N. Mock et al, AATCC Int. Conf. and Exhib., Book of Papers (1995) 55. Google Scholar 110 A Giehl, K Schaefer and H Höcker, DWl Rep., 121 (1998) 446. Google Scholar 111 A Iqbal et al., Proc. Colourchem 98, Czech Republic (1998) L29. Google Scholar 112 Warner–Jenkins, French P 2 756 559 (1998). Google Scholar 113 Ciba, Japanese P 10 158, 130 (1998). Google Scholar 114 Henkel, German P 19 630 274 (1998). Google Scholar 115 Hans Schwarzkopf, German P 19 728 335 (1998). Google Scholar 116 Hans Schwarzkopf, German P 19 728 334 (1998). Google Scholar 117 Clairol, USP 5 704 949 (1998). Google Scholar 118 W Johnson Jr, Int. J. Toxicol, 16 (suppl.) (1997) 59. Google Scholar 119 S. N. J. Pang, Int. J. Toxicol, 16 (suppl.) (1997) 131. Google Scholar 120 Li–Cor, PCT Int. Appl. WO 98 30 992 (1998). Google Scholar 121 J J LaClair, Angew. Chem. Int. Edn, 37 (3) (1998) 325. 10.1002/(SICI)1521-3773(19980216)37:3<325::AID-ANIE325>3.0.CO;2-L Web of Science®Google Scholar 122 Perkin–Elmer, PCT Int. Appl. WO 97 49 769 (1998). Google Scholar 123 J C V P de Moura in Dyes for non–textile applications, Ed. A T Peters and H S Freeman (Amsterdam: Elsevier, 1999). Google Scholar 124 Hitachi, PCT Int. Appl. WO 98 01133 (1998). Google Scholar 125 Tomoegawa, Japanese P 10 097 103 (1998). Google Scholar 126 Eastman Kodak, European P Appl. 832 938 (1998). Google Scholar 127 Dainippon Ink, Japanese P 10 152 622 (1998). Google Scholar 128 Dainippon Ink, Japanese P 10 147 725 (1998). Google Scholar 129 W Bauer and J Ritter in Chemistry of functional dyes, Vol. 2, Ed. Z Yoshida and Y Shirota (Tokyo: Mita Press, 1993) 649. Google Scholar 130 M G Hutchings, Dyes and Pigments, 29 (2) (1995) 95. 10.1016/0143-7208(95)00062-K Web of Science®Google Scholar 131 H S Freeman, J Lye, D Hinks, R Cox and J Sokolowska–Gajda, Modern Molecular Modeling Methods: Utility in Color Chemistry, Proceedings of Colorchem. 98 Conference, L2, Czech Republic, 1998. Google Scholar 132 S Timofei, L Kurunczi, W Schmidt and Z Simon, Dyes and Pigments, 32 (1) (1996) 25. 10.1016/0143-7208(96)00001-0 CASWeb of Science®Google Scholar 133 S Timofei, L Kurunczi, T Suzuki, W M F Fabian and S Muresan, Dyes and Pigments, 34 (3) (1997) 181. 10.1016/S0143-7208(96)00081-2 Web of Science®Google Scholar 134 T I Oprea, L Kurunczi and S Timofei, Dyes and Pigments, 33 (1) (1997) 41. 10.1016/S0143-7208(96)00025-3 Web of Science®Google Scholar 135 H Shiozaki, Dyes and Pigments, 33 (3) (1997) 229. 10.1016/S0143-7208(96)00051-4 Web of Science®Google Scholar Citing Literature Volume29, Issue1June 1999Pages 8-22 ReferencesRelatedInformation}, number={29}, journal={Review of Progress in Coloration and Related Topics}, author={Freeman, H.S. and Sokolowska, J.}, year={1999}, pages={8–22} } @misc{freeman_hinks_sokolowska-gajda_1999, title={Organic pigments from twisted benzidines}, volume={5,965,717}, number={1999 Oct. 12}, publisher={Washington, DC: U.S. Patent and Trademark Office}, author={Freeman, H. S. and Hinks, D. and Sokolowska-Gajda, J.}, year={1999} } @article{sokolowska-gajda_hinks_haney_freeman_tanaka_1998, title={Field desorption mass spectral analysis of some nonmutagenic benzidine-based pigments}, volume={39}, ISSN={["0143-7208"]}, DOI={10.1016/S0143-7208(97)00116-2}, abstractNote={This paper is concerned with field desorption mass spectral (FDMS) analysis of novel disazomethine, disazoacetoacetanilide (diarylide) and disazopyrazolone pigments containing nonmutagenic benzidine homologs. The FD spectra of the aforementioned types of pigments are characterized by intense parent ion peaks [M+.] and relatively intense [M+]/2 daughter ions, a pattern which serves as a fingerprint for these molecular structures.}, number={3}, journal={DYES AND PIGMENTS}, author={Sokolowska-Gajda, J and Hinks, D and Haney, CA and Freeman, HS and Tanaka, M}, year={1998}, month={Oct}, pages={159–171} } @misc{freeman_sokolowska-gajda_reife_1997, title={Iron-complexed formazan dyes for polyamide and protein substrates}, volume={5,677,434}, number={1997 Oct. 14}, publisher={Washington, DC: U.S. Patent and Trademark Office}, author={Freeman, H. S. and Sokolowska-Gajda, J. and Reife, A.}, year={1997} } @article{sokolowskagajda_freeman_reife_1996, title={Synthetic dyes based on environmental considerations .2. Iron complexed formazan dyes}, volume={30}, ISSN={["0143-7208"]}, DOI={10.1016/0143-7208(95)00048-8}, abstractNote={This paper is concerned with the synthesis and evaluation of some 1:2 iron complexed formazan dyes for use on wool and nylon. The chemical structures of these new dyes were confirmed with the aid of negative ion FAB mass spectrometry, a technique which also proved instrumental in establishing the nature of the products obtained when unsymmetrical 1:2 iron complexed formazan dyes were synthetic targets. It is clear from the fastness properties obtained that certain of the title compounds could have utility in applications requiring high hightfastness.}, number={1}, journal={DYES AND PIGMENTS}, author={SokolowskaGajda, J and Freeman, HS and Reife, A}, year={1996}, pages={1–20} } @article{sokolowska-gajda_freeman_reife_1995, title={Synthesizing premetallized acid dyes based on environmental considerations}, volume={27}, number={2}, journal={Textile Chemist and Colorist}, author={Sokolowska-Gajda, J. and Freeman, H. S. and Reife, A.}, year={1995}, pages={13} } @article{sokolowskagajda_freeman_reife_1994, title={SYNTHETIC DYES BASED ON ENVIRONMENTAL CONSIDERATIONS .1. IRON COMPLEXES FOR PROTEIN AND POLYAMIDE FIBERS}, volume={64}, ISSN={["0040-5175"]}, DOI={10.1177/004051759406400704}, abstractNote={ We have described the synthesis of some novel 1:2 Fe complexed azo dyes and compared their properties with 1:2 Cr and 1:2 Co commercial analogs. We also report the interesting FAB mass spectroscopy analysis of 1:2 metallized azo dyes resulting in the formation of 1:1 complexed dyes and their unmetallized precursors. Results from light- and rubbing-fastness evaluations of these 1:2 Fe metallized dyes show the black dyes to be strong candidates for use on wool and nylon in applications requiring high lightfastness. }, number={7}, journal={TEXTILE RESEARCH JOURNAL}, author={SOKOLOWSKAGAJDA, J and FREEMAN, HS and REIFE, A}, year={1994}, month={Jul}, pages={388–396} } @article{sokolowskagajda_freeman_1992, title={A NEW MEDIUM FOR THE DIAZOTIZATION OF 2-AMINO-6-NITROBENZOTHIAZOLE AND 2-AMINOBENZOTHIAZOLE}, volume={20}, ISSN={["0143-7208"]}, DOI={10.1016/0143-7208(92)85006-8}, abstractNote={Abstract To identify a useful alternative to H 3 PO 4 as a medium for diazotizing heteroaromatic amines a number of organic acids having a similar ionization constant (K 1 ) were examined. It was found that dichloroacetic acid is an effective solvent for both the diazotization of the title compounds and the synthesis of important commercial disperse dyes based on these amines. Dyes such as C.I. Disperse Red 177 and Disperse Violet 52 were readily obtained in 85–90% yield and very pure form.}, number={2}, journal={DYES AND PIGMENTS}, author={SOKOLOWSKAGAJDA, J and FREEMAN, HS}, year={1992}, pages={137–145} } @article{freeman_hao_sokolowska-gajda_vanbreemen_1991, title={Matrix selection in the FAB mass spectral analysis of synthetic dyes}, volume={16}, number={4}, journal={Dyes and Pigments}, author={Freeman, H. S. and Hao, Z. and Sokolowska-Gajda, J. and VanBreemen, R. B.}, year={1991}, pages={317} } @article{freeman_sokolowskagajda_1990, title={PHOTODEGRADATION OF CI ACID ORANGE-60 AND CI ACID GREEN-25 IN AN AMIDE ENVIRONMENT}, volume={60}, ISSN={["0040-5175"]}, DOI={10.1177/004051759006000405}, abstractNote={Photodegradation, in solution and in nylon 66 fiber, of two automotive acid dyes (CI acid orange 60 and CI acid green 25) for nylon carpet has been investigated. Photofading in solution was done in dimethylformamide (DMF) with the aid of a 254-nm light source, and the work in nylon fiber used the xenon arc light of an Atlas CI 65 weatherometer. The results show that these dyes fade via a photoreduction process under both sets of conditions, and they suggest that DMF is a suitable model for nylon in characterizing the photodegradation of acid dyes. The structures of the degradation products of the two dyes were determined with the aid of fast atom bom bardment and desorption chemical ionization mass spectrometry and by HPLC and TLC comparisons with authentic samples.}, number={4}, journal={TEXTILE RESEARCH JOURNAL}, author={FREEMAN, HS and SOKOLOWSKAGAJDA, J}, year={1990}, month={Apr}, pages={221–227} } @article{sokolowskagajda_freeman_1990, title={THE SYNTHESIS OF DISPERSE AND CATIONIC DYES FROM ACID DYE STRUCTURES}, volume={14}, ISSN={["0143-7208"]}, DOI={10.1016/0143-7208(90)87004-M}, abstractNote={This paper is concerned with the conversion of some mono- and di-sulfonated naphthol azo dyes to disperse dyes suitable for poly(ethyleneterephthalate) fibers, and cationic dyes for cationic dyeable polyester and acrylic fibers. The chemical structure of these new dyes has been confirmed by 1H-NMR, FAB or DCI mass spectrometry, and in some cases by elemental analysis. Some fastness properties and absorption spectral data of both types of dyes are also reported, as well as an interesting limitation in the naphthalene-based acid dyes suitable for the described conversion.}, number={1}, journal={DYES AND PIGMENTS}, author={SOKOLOWSKAGAJDA, J and FREEMAN, HS}, year={1990}, pages={35–48} } @article{freeman_sokolowskaogajda_hao_1989, title={13C NMR analysis of some azo and anthraquinone textile dyes}, volume={21}, number={4}, journal={Textile Chemist and Colorist}, author={Freeman, H. S. and SokolowskaOGajda, J. and Hao, Z.}, year={1989}, pages={24} }