@article{walker_leath_hagler_murphy_2001, title={Variation among isolates of Fusarium graminearum associated with Fusarium head blight in North Carolina}, volume={85}, ISSN={["0191-2917"]}, DOI={10.1094/PDIS.2001.85.4.404}, abstractNote={ Fusarium head blight (FHB) can reduce yield of wheat and decrease the value of harvested grain by accumulation of detrimental toxins. Understanding the variability of the fungal population associated with infection could improve disease control strategies. Sixty-six isolates of Fusarium graminearum associated with FHB were collected in North Carolina and tested for in vitro growth rate, in vitro production of deoxynivalenol (DON) and zearalenone, and pathogenicity on three cultivars of soft red winter wheat. Significant differences among isolates were found for all three traits. Randomly Amplified Polymorphic DNA (RAPD) analysis revealed high levels of genotypic diversity among isolates. Isolates of F. graminearum, F. culmorum, and F. avenaceum acquired from the Pennsylvania State University Fusarium Center were included for comparison in all tests. In vivo levels of DON were measured for the five isolates associated with the highest levels of disease and the five isolates associated with the lowest levels of disease, and no significant differences were found. However, all ten isolates produced detectable levels of DON in vivo. Mean disease ratings ranged from 3.4 to 96.4%, in vitro (DON) levels ranged from 0 to 7176.2 ppm, and zearalenone ranged from 0 to 354.7 ppm, among isolates. A multiple regression model using in vitro growth, in vitro DON, and zearalenone production, collection location, wheat cultivar of isolate origin, plot, tillage conditions, and previous crop as independent variables and percent blighted tissue as the dependent variable was developed. The cumulative R2 value for the model equaled 0.27 with in vitro rate of growth making the largest contribution. Analysis of phenotype and genotype among isolates demonstrated diversity in a single plot, in a single location, and in North Carolina. Genotypic and phenotypic diversity were significant under both conventional and reduced tillage conditions, and diversity was high regardless of whether the previous crop had been a host or non-host for F. graminearum. These data indicate a variable pathogen population of F. graminearum exists in North Carolina, and members of this population can be both highly pathogenic on wheat and produce high levels of detrimental toxins, indicating a potential threat for problems with FHB within the state. }, number={4}, journal={PLANT DISEASE}, author={Walker, SL and Leath, S and Hagler, WM and Murphy, JP}, year={2001}, month={Apr}, pages={404–410} } @article{walker_leath_murphy_lommel_1998, title={Selection for resistance and tolerance to oat mosaic virus and oat golden stripe virus in hexaploid oats}, volume={82}, ISSN={["0191-2917"]}, DOI={10.1094/PDIS.1998.82.4.423}, abstractNote={ Coker 716, a hexaploid oat cultivar resistant to both oat mosaic virus (OMV) and oat golden stripe virus (OGSV) was crossed to three susceptible cultivars (Brooks, Madison, and Tech) to form three individual populations. Individual breeding lines were derived from each cross in the F2 generation and tested in plots consisting of equally spaced individual hills in OMV- and OGSV-infested soils and non-infested soils to evaluate resistance and yield loss of individual lines. Foliar symptoms, harvest index, and yield loss were examined as selection criteria for resistant genotypes. The study was conducted over 2 years at two North Carolina locations that differed in soil type and climate. Multiple regression models describing yield loss in each cross due to rating, year, and location were calculated. Coefficients of multiple determination in these models ranged from 0.39 to 0.51. Yield loss ranged from 39 to 60% among different crosses. Infection by OMV and OGSV accounted for the majority of yield loss in two of the populations. Disease severity varied widely over years and locations. The results suggest that selection of lines with symptomatic tissue of 10% or less, or selection of tolerant lines, is needed for breeding progress. }, number={4}, journal={PLANT DISEASE}, author={Walker, SL and Leath, S and Murphy, JP and Lommel, SA}, year={1998}, month={Apr}, pages={423–427} }