@article{rasgon_scott_2004, title={Crimson: A novel sex-linked eye color mutant of Culex pipiens L. (Diptera : Culicidae)}, volume={41}, ISSN={["1938-2928"]}, DOI={10.1603/0022-2585-41.3.385}, abstractNote={Abstract Xanthommatin is the primary ommochrome eye pigment in mosquitoes. The terminal step in xanthommatin biosynthesis, involving oxidation of 3-hydroxykynurenine (3HK), can proceed enzymatically by phenoxazinone synthase or by nonenzymatic auto-oxidation of 3HK. The relative contributions of these pathways, however, are unclear. We isolated a novel Culex pipiens mutant (crimson) that could be used to address this question. Homozygous crimson embryos exhibit no visible eyespot; first-instar larval ocelli are colorless. Eyes gradually turn red through immature development. Teneral crimson adults possess red eyes that darken to wild-type ≈5 d after emergence. Crosses indicate that crimson is sex-linked and fully recessive. Addition of xanthommatin precursors to rearing water did not rescue wild-type phenotype and suggested that the mutation is in the terminal step of ommochrome biosynthesis. Crimson expression was not temperature sensitive. Thin-layer chromatography demonstrated teneral crimson adults lacked xanthommatin. Teneral and aged wild-type adults exhibited low-mobility black ommochrome spots; aged crimson adults exhibited low-mobility brown-red ommochrome spots. Absorbance spectroscopy of eye extracts indicated teneral adult crimson eyes lacked xanthommatin but had abnormally high levels of 3HK, whereas extracts of 10-d-old crimson adults had depleted levels of 3HK and detectable levels of xanthommatin. Light microscopy indicated that eyes of young (3 d old) wild-type adults had a high concentration of pigment granules. Eyes of teneral crimson adults had no pigment granules. Eyes of 20-d-old crimson adults had low levels of pigment granules. We suggest two possible mechanisms for the crimson mutation: (1) transport of 3HK into the pigment cells and/or pigment granules is slow, with normal oxidation of 3HK into xanthommatin, or (2) 3HK is transported normally into pigment cells/granules but is not immediately oxidized to xanthommatin, resulting in 3HK hyper-accumulation and slow nonenzymatic production of xanthommatin after adult emergence.}, number={3}, journal={JOURNAL OF MEDICAL ENTOMOLOGY}, author={Rasgon, JL and Scott, TW}, year={2004}, month={May}, pages={385–391} } @article{scott_wyatt_tsou_robertson_allen_1999, title={Model system for plant cell biology: GFP imaging in living onion epidermal cells}, volume={26}, ISSN={["1940-9818"]}, DOI={10.2144/99266st04}, abstractNote={ The ability to visualize organelle localization and dynamics is very useful in studying cellular physiological events. Until recently, this has been accomplished using a variety of staining methods. However, staining can give inaccurate information due to nonspecific staining, diffusion of the stain or through toxic effects. The ability to target green fluorescent protein (GFP) to various organelles allows for specific labeling of organelles in vivo. The disadvantages of GFP thus far have been the time and money involved in developing stable transformants or maintaining cell cultures for transient expression. In this paper, we present a rapid transient expression system using onion epidermal peels. We have localized GFP to various cellular compartments (including the cell wall) to illustrate the utility of this method and to visualize dynamics of these compartments. The onion epidermis has large, living, transparent cells in a monolayer, making them ideal for visualizing GFP. This method is easy and inexpensive, and it allows for testing of new GFP fusion proteins in a living tissue to determine deleterious effects and the ability to express before stable transformants are attempted. }, number={6}, journal={BIOTECHNIQUES}, author={Scott, A and Wyatt, S and Tsou, PL and Robertson, D and Allen, NS}, year={1999}, month={Jun}, pages={1125-+} }