@article{muthusamy_sommerville_moeser_stumpo_sannes_adler_blackshear_weimer_ghashghaei_2015, title={MARCKS-dependent mucin clearance and lipid metabolism in ependymal cells are required for maintenance of forebrain homeostasis during aging}, volume={14}, ISSN={["1474-9726"]}, DOI={10.1111/acel.12354}, abstractNote={SummaryEpendymal cells (ECs) form a barrier responsible for selective movement of fluids and molecules between the cerebrospinal fluid and the central nervous system. Here, we demonstrate that metabolic and barrier functions in ECs decline significantly during aging in mice. The longevity of these functions in part requires the expression of the myristoylated alanine‐rich protein kinase C substrate (MARCKS). Both the expression levels and subcellular localization of MARCKS in ECs are markedly transformed during aging. Conditional deletion of MARCKS in ECs induces intracellular accumulation of mucins, elevated oxidative stress, and lipid droplet buildup. These alterations are concomitant with precocious disruption of ependymal barrier function, which results in the elevation of reactive astrocytes, microglia, and macrophages in the interstitial brain tissue of young mutant mice. Interestingly, similar alterations are observed during normal aging in ECs and the forebrain interstitium. Our findings constitute a conceptually new paradigm in the potential role of ECs in the initiation of various conditions and diseases in the aging brain.}, number={5}, journal={AGING CELL}, author={Muthusamy, Nagendran and Sommerville, Laura J. and Moeser, Adam J. and Stumpo, Deborah J. and Sannes, Philip and Adler, Kenneth and Blackshear, Perry J. and Weimer, Jill M. and Ghashghaei, H. Troy}, year={2015}, month={Oct}, pages={764–773} } @article{jacquet_muthusamy_sommerville_xiao_liang_zhang_holtzman_ghashghaei_2011, title={Specification of a Foxj1-Dependent Lineage in the Forebrain Is Required for Embryonic-to-Postnatal Transition of Neurogenesis in the Olfactory Bulb}, volume={31}, ISSN={["0270-6474"]}, DOI={10.1523/jneurosci.0171-11.2011}, abstractNote={Establishment of a neural stem cell niche in the postnatal subependymal zone (SEZ) and the rostral migratory stream (RMS) is required for postnatal and adult neurogenesis in the olfactory bulbs (OB). We report the discovery of a cellular lineage in the SEZ-RMS-OB continuum, the specification of which is dependent on the expression of the forkhead transcription factor Foxj1 in mice. Spatially and temporally restricted Foxj1+ neuronal progenitors emerge during embryonic periods, surge during perinatal development, and are active only for the first few postnatal weeks. We show that the development of the unique Foxj1-derived lineage is dependent on Foxj1 expression and is required for overall postnatal neurogenesis in the OB. Strikingly, the production of neurons from Foxj1+ progenitors significantly declines after the early postnatal weeks, but Foxj1-derived neurons in the OB persist during adult periods. For the first time, our study identifies the time- and region-specific activity of a perinatal progenitor domain that is required for transition and progression of OB neurogenesis from the embryonic-to-postnatal periods.}, number={25}, journal={JOURNAL OF NEUROSCIENCE}, author={Jacquet, Benoit V. and Muthusamy, Nagendran and Sommerville, Laura J. and Xiao, Guanxi and Liang, Huixuan and Zhang, Yong and Holtzman, Michael J. and Ghashghaei, H. Troy}, year={2011}, month={Jun}, pages={9368–9382} }