@article{hassan_rahman_bari_2015, title={Low-Cycle Fatigue and Ratcheting Responses of Elbow Piping Components}, volume={137}, ISSN={["1528-8978"]}, DOI={10.1115/1.4029068}, abstractNote={The objective of this study was to investigate low-cycle fatigue and ratcheting responses of elbows through experimental and analytical studies. Low-cycle fatigue and ratcheting damage accumulation in piping components may occur under repeated reversals of loading induced by earthquake and/or thermomechanical operation. Ratcheting and fatigue damage accumulation can cause failure of piping systems through fatigue cracks or plastic buckling. However, the ratcheting damage induced failures are yet to be understood clearly; consequently, ASME Code design provisions against ratcheting failure continue to be a controversial issue over the last two decades. A systematic set of piping component experimental responses involving ratcheting and a computational tool to simulate these responses will be essential to rationally address the issue. Development of a constitutive model for simulating component ratcheting responses remains to be a challenging problem. In order to develop an experimentally validated constitutive model, a set of elbow experiments was conducted. The loading prescribed in the experiments involved displacement-controlled or force-controlled in-plane cyclic bending with or without internal pressure. Force, displacement, internal pressure, elbow diameter change, and strains at four locations of the elbow specimens were recorded. This article presents and discusses the results from the experimental study. A sister article evaluates seven different constitutive models against simulating these elbow ratcheting and fatigue responses.}, number={3}, journal={JOURNAL OF PRESSURE VESSEL TECHNOLOGY-TRANSACTIONS OF THE ASME}, author={Hassan, T. and Rahman, M. and Bari, S.}, year={2015}, month={Jun} } @article{bari_hassan_2002, title={An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation}, volume={18}, ISSN={["0749-6419"]}, DOI={10.1016/S0749-6419(01)00012-2}, abstractNote={In a search for a constitutive model for ratcheting simulations, the models by Chaboche, Ohno–Wang, McDowell, Jiang–Sehitoglu, Voyiadjis–Basuroychowdhury and AbdelKarim–Ohno are evaluated against a set of uniaxial and biaxial ratcheting responses. With the assumption of invariant shape of the yield surface during plastic loading, the ratcheting simulations for uniaxial loading are primarily a function of the plastic modulus calculation, whereas the simulations for multiaxial loading are sensitive to the kinematic hardening rule of a model. This characteristic of the above mentioned models is elaborated in this paper. It is demonstrated that if all parameters of the kinematic hardening rule are determined from uniaxial responses only, these parameters primarily enable a better plastic modulus calculation. However, in this case the role of the kinematic hardening rule in representing the ratcheting responses for multiaxial loading is under-appreciated. This realization motivated many researchers to incorporate multiaxial load dependent terms or parameters into the kinematic hardening rule. This paper evaluates some of these modified rules and finds that none is general enough to simulate the ratcheting responses consistently for the experiments considered. A modified kinematic hardening rule is proposed using the idea of Delobelle and his co-workers in the framework of the Chaboche model. This new rule introduces only one multiaxial load dependent parameter to the Chaboche model, but performs the best in simulating all the ratcheting responses considered.}, number={7}, journal={INTERNATIONAL JOURNAL OF PLASTICITY}, author={Bari, S and Hassan, T}, year={2002}, pages={873–894} } @article{bari_hassan_2001, title={Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation}, volume={17}, ISSN={["0749-6419"]}, DOI={10.1016/S0749-6419(00)00031-0}, abstractNote={An earlier paper by the authors evaluated the performance of several coupled models in simulating a series of uniaxial and biaxial ratcheting responses. This paper evaluates the performance of various kinematic hardening rules in an uncoupled model for the same set of ratcheting responses. A modified version of the Dafalias–Popov uncoupled model has been demonstrated to perform well for uniaxial ratcheting simulation. However, its performance in multiaxial ratcheting simulation is significantly influenced by the kinematic hardening rules employed in the model. Performances of eight different kinematic hardening rules, when engaged with the modified Dafalias–Popov model, are evaluated against a series of rate-independent multiaxial ratcheting responses of cyclically stabilized carbon steels. The kinematic hardening rules proposed by Armstrong–Frederick, Voyiadjis–Sivakumar, Phillips, Tseng–Lee, Kaneko, Xia–Ellyin, Chaboche and Ohno–Wang are examined. The Armstrong–Frederick rule performs reasonably for one type of the biaxial ratcheting response, but fails in others. The Voyiadjis–Sivakumar rule and its constituents, the Phillips and the Tseng–Lee rules, can not simulate the biaxial ratcheting responses. The Kaneko rule, composed of the Ziegler and the prestress directions, and the Xia–Ellyin rule, composed of the Ziegler and Mroz directions, also fail to simulate the biaxial ratcheting responses. The Chaboche rule, with three decomposed Armstrong–Frederick rules, performs the best for the whole set of ratcheting responses. The Ohno–Wang rule performs well for the data set, except for one biaxial response where it predicts shakedown with subsequent reversal of ratcheting.}, number={7}, journal={INTERNATIONAL JOURNAL OF PLASTICITY}, author={Bari, S and Hassan, T}, year={2001}, pages={885–905} } @article{bari_hassan_2000, title={Anatomy of coupled constitutive models for ratcheting simulation}, volume={16}, ISSN={["0749-6419"]}, DOI={10.1016/S0749-6419(99)00059-5}, abstractNote={This paper critically evaluates the performance of five constitutive models in predicting ratcheting responses of carbon steel for a broad set of uniaxial and biaxial loading histories. The models proposed by Prager, Armstrong and Frederick, Chaboche, Ohno-Wang and Guionnet are examined. Reasons for success and failure in simulating ratcheting by these models are elaborated. The bilinear Prager and the nonlinear Armstrong-Frederick models are found to be inadequate in simulating ratcheting responses. The Chaboche and Ohno-Wang models perform quite well in predicting uniaxial ratcheting responses; however, they consistently overpredict the biaxial ratcheting responses. The Guionnet model simulates one set of biaxial ratcheting responses very well, but fails to simulate uniaxial and other biaxial ratcheting responses. Similar to many earlier studies, this study also indicates a strong influence of the kinematic hardening rule or backstress direction on multiaxial ratcheting simulation. Incorporation of parameters dependent on multiaxial ratcheting responses, while dormant for uniaxial responses, into Chaboche-type kinematic hardening rules may be conducive to improve their multiaxial ratcheting simulations. The uncoupling of the kinematic hardening rule from the plastic modulus calculation is another potentially viable alternative. The best option to achieve a robust model for ratcheting simulations seems to be the incorporation of yield surface shape change (formative hardening) in the cyclic plasticity model.}, number={3-4}, journal={INTERNATIONAL JOURNAL OF PLASTICITY}, author={Bari, S and Hassan, T}, year={2000}, pages={381–409} }