@misc{perera_hung_moore_stevenson-paulik_boss_2008, title={Transgenic Arabidopsis Plants Expressing the Type 1 Inositol 5-Phosphatase Exhibit Increased Drought Tolerance and Altered Abscisic Acid Signaling}, volume={20}, ISSN={["1040-4651"]}, DOI={10.1105/tpc.108.061374}, abstractNote={AbstractThe phosphoinositide pathway and inositol-1,4,5-trisphosphate (InsP3) are implicated in plant responses to stress. To determine the downstream consequences of altered InsP3-mediated signaling, we generated transgenic Arabidopsis thaliana plants expressing the mammalian type I inositol polyphosphate 5-phosphatase (InsP 5-ptase), which specifically hydrolyzes soluble inositol phosphates and terminates the signal. Rapid transient Ca2+ responses to a cold or salt stimulus were reduced by ∼30% in these transgenic plants. Drought stress studies revealed, surprisingly, that the InsP 5-ptase plants lost less water and exhibited increased drought tolerance. The onset of the drought stress was delayed in the transgenic plants, and abscisic acid (ABA) levels increased less than in the wild-type plants. Stomatal bioassays showed that transgenic guard cells were less responsive to the inhibition of opening by ABA but showed an increased sensitivity to ABA-induced closure. Transcript profiling revealed that the drought-inducible ABA-independent transcription factor DREB2A and a subset of DREB2A-regulated genes were basally upregulated in the InsP 5-ptase plants, suggesting that InsP3 is a negative regulator of these DREB2A-regulated genes. These results indicate that the drought tolerance of the InsP 5-ptase plants is mediated in part via a DREB2A-dependent pathway and that constitutive dampening of the InsP3 signal reveals unanticipated interconnections between signaling pathways.}, number={10}, journal={PLANT CELL}, author={Perera, Imara Y. and Hung, Chiu-Yueh and Moore, Candace D. and Stevenson-Paulik, Jill and Boss, Wendy F.}, year={2008}, month={Oct}, pages={2876–2893} } @article{stevenson-paulik_love_boss_2003, title={Differential regulation of two Arabidopsis type III phosphatidylinositol 4-kinase isoforms. A regulatory role for the pleckstrin homology domain}, volume={132}, ISSN={["0032-0889"]}, DOI={10.1104/pp.103.021758}, abstractNote={Abstract Here, we compare the regulation and localization of the Arabidopsis type III phosphatidylinositol (PtdIns) 4-kinases, AtPI4Kα1 and AtPI4Kβ1, in Spodoptera frugiperda (Sf9) insect cells. We also explore the role of the pleckstrin homology (PH) domain in regulating AtPI4Kα1. Recombinant kinase activity was found to be differentially sensitive to PtdIns-4-phosphate (PtdIns4P), the product of the reaction. The specific activity of AtPI4Kα1 was inhibited 70% by 0.5 mm PtdIns4P. The effect of PtdIns4P was not simply due to charge because AtPI4Kα1 activity was stimulated approximately 50% by equal concentrations of the other negatively charged lipids, PtdIns3P, phosphatidic acid, and phosphatidyl-serine. Furthermore, inhibition of AtPI4Kα1 by PtdIns4P could be alleviated by adding recombinant AtPI4Kα1 PH domain, which selectively binds to PtdIns4P (Stevenson et al., 1998). In contrast, the specific activity of AtPI4Kβ1, which does not have a PH domain, was stimulated 2-fold by PtdIns4P but not other negatively charged lipids. Visualization of green fluorescent protein fusion proteins in insect cells revealed that AtPI4Kα1 was associated primarily with membranes in the perinuclear region, whereas AtPI4Kβ1 was in the cytosol and associated with small vesicles throughout the cytoplasm. Expression of AtPI4Kα1 without the PH domain in the insect cells compromised PtdIns 4-kinase activity and caused mislocalization of the kinase. The green fluorescent protein-PH domain alone was associated with intracellular membranes and the plasma membrane. In vitro, the PH domain appeared to be necessary for association of AtPI4Kα1 with fine actin filaments. These studies support the idea that the Arabidopsis type III PtdIns 4-kinases are responsible for distinct phosphoinositide pools.}, number={2}, journal={PLANT PHYSIOLOGY}, author={Stevenson-Paulik, J and Love, J and Boss, WF}, year={2003}, month={Jun}, pages={1053–1064} } @article{stevenson_perera_heilmann_persson_boss_2000, title={Inositol signaling and plant growth}, volume={5}, ISSN={1360-1385}, url={http://dx.doi.org/10.1016/s1360-1385(00)01652-6}, DOI={10.1016/S1360-1385(00)01652-6}, abstractNote={Living organisms have evolved to contain a wide variety of receptors and signaling pathways that are essential for their survival in a changing environment. Of these, the phosphoinositide pathway is one of the best conserved. The ability of the phosphoinositides to permeate both hydrophobic and hydrophilic environments, and their diverse functions within cells have contributed to their persistence in nature. In eukaryotes, phosphoinositides are essential metabolites as well as labile messengers that regulate cellular physiology while traveling within and between cells. The stereospecificity of the six hydroxyls on the inositol ring provides the basis for the functional diversity of the phosphorylated isomers that, in turn, generate a selective means of intracellular and intercellular communication for coordinating cell growth. Although such complexity presents a difficult challenge for bench scientists, it is ideal for the regulation of cellular functions in living organisms.}, number={6}, journal={Trends in Plant Science}, publisher={Elsevier BV}, author={Stevenson, Jill M and Perera, Imara Y and Heilmann, Ingo and Persson, Staffan and Boss, Wendy F}, year={2000}, month={Jun}, pages={252–258} } @inbook{heilmann_perera_stevenson_ransom_gross_boss_1998, title={Inositol lipid signaling: what can we learn from plants?}, booktitle={Advances in lipids research}, publisher={Sevilla, Spain: University of Sevilla Press}, author={Heilmann, I. and Perera, I. Y. and Stevenson, J. M. and Ransom, W. D. and Gross, W. and Boss, W. F.}, editor={J. Sanchez, E. Cerda-Olmedo and Martinez-Force, E.Editors}, year={1998}, pages={394–397} }