@article{buenaventura_szpila_cassel_wiegmann_pape_2020, title={Anchored hybrid enrichment challenges the traditional classification of flesh flies (Diptera: Sarcophagidae)}, volume={45}, ISSN={["1365-3113"]}, DOI={10.1111/syen.12395}, abstractNote={Abstract}, number={2}, journal={SYSTEMATIC ENTOMOLOGY}, author={Buenaventura, Eliana and Szpila, Krzysztof and Cassel, Brian K. and Wiegmann, Brian M. and Pape, Thomas}, year={2020}, month={Apr}, pages={281–301} } @article{wiegmann_trautwein_winkler_barr_kim_lambkin_bertone_cassel_bayless_heimberg_et al._2011, title={Episodic radiations in the fly tree of life}, volume={108}, number={14}, journal={Proceedings of the National Academy of Sciences of the United States of America}, author={Wiegmann, B. M. and Trautwein, M. D. and Winkler, I. S. and Barr, N. B. and Kim, J. W. and Lambkin, C. and Bertone, M. A. and Cassel, B. K. and Bayless, K. M. and Heimberg, A. M. and et al.}, year={2011}, pages={5690–5695} } @article{wiegmann_trautwein_kim_cassel_bertone_winterton_yeates_2009, title={Single-copy nuclear genes resolve the phylogeny of the holometabolous insects}, volume={7}, ISSN={["1741-7007"]}, DOI={10.1186/1741-7007-7-34}, abstractNote={Evolutionary relationships among the 11 extant orders of insects that undergo complete metamorphosis, called Holometabola, remain either unresolved or contentious, but are extremely important as a context for accurate comparative biology of insect model organisms. The most phylogenetically enigmatic holometabolan insects are Strepsiptera or twisted wing parasites, whose evolutionary relationship to any other insect order is unconfirmed. They have been controversially proposed as the closest relatives of the flies, based on rDNA, and a possible homeotic transformation in the common ancestor of both groups that would make the reduced forewings of Strepsiptera homologous to the reduced hindwings of Diptera. Here we present evidence from nucleotide sequences of six single-copy nuclear protein coding genes used to reconstruct phylogenetic relationships and estimate evolutionary divergence times for all holometabolan orders.Our results strongly support Hymenoptera as the earliest branching holometabolan lineage, the monophyly of the extant orders, including the fleas, and traditionally recognized groupings of Neuropteroidea and Mecopterida. Most significantly, we find strong support for a close relationship between Coleoptera (beetles) and Strepsiptera, a previously proposed, but analytically controversial relationship. Exploratory analyses reveal that this relationship cannot be explained by long-branch attraction or other systematic biases. Bayesian divergence times analysis, with reference to specific fossil constraints, places the origin of Holometabola in the Carboniferous (355 Ma), a date significantly older than previous paleontological and morphological phylogenetic reconstructions. The origin and diversification of most extant insect orders began in the Triassic, but flourished in the Jurassic, with multiple adaptive radiations producing the astounding diversity of insect species for which these groups are so well known.These findings provide the most complete evolutionary framework for future comparative studies on holometabolous model organisms and contribute strong evidence for the resolution of the 'Strepsiptera problem', a long-standing and hotly debated issue in insect phylogenetics.}, journal={BMC BIOLOGY}, author={Wiegmann, Brian M. and Trautwein, Michelle D. and Kim, Jung-Wook and Cassel, Brian K. and Bertone, Matthew A. and Winterton, Shaun L. and Yeates, David K.}, year={2009}, month={Jun} } @article{wiegmann_tsaur_webb_yeates_cassel_2000, title={Monophyly and relationships of the Tabanomorpha (Diptera : Brachycera) based on 28S ribosomal gene sequences}, volume={93}, ISSN={["1938-2901"]}, DOI={10.1603/0013-8746(2000)093[1031:MAROTT]2.0.CO;2}, abstractNote={Abstract Higher-level relationships among the earliest lineages of brachyceran Diptera remain poorly resolved by comparative morphology. Nucleotide sequence data should be useful in clarifying brachyceran relationships, especially where morphological evidence is either contradictory or controversial. We examined phylogenetic relationships among the family-level taxa of the brachyceran infraorder Tabanomorpha using sequences of a large portion of the 28S ribosomal DNA. Twenty-five species were sequenced, including five outgroup species from the Stratiomyomorpha and Xylophagomorpha. Parsimony and maximum likelihood-based phylogenetic analysis of 2,371 alignable sites yielded identical inferred tree topologies. 28S rDNA supports the monophyly of the Tabanomorpha (Vermileonidae, Rhagionidae, Pelecorhynchidae, Athericidae and Tabanidae). Our results contradict several published hypotheses that associate Vermileonidae with asiloid or eremoneuran taxa remote from the Tabanomorpha. The molecular data also support monophyly for all of the included family-level lineages, and corroborate several recent phylogenetic hypotheses based on comparative morphology.}, number={5}, journal={ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA}, author={Wiegmann, BM and Tsaur, SC and Webb, DW and Yeates, DK and Cassel, BK}, year={2000}, month={Sep}, pages={1031–1038} }