@article{magarey_klammer_chappell_trexler_pallipparambil_hain_2019, title={Eco-efficiency as a strategy for optimizing the sustainability of pest management}, volume={75}, ISSN={["1526-4998"]}, url={https://doi.org/10.1002/ps.5560}, DOI={10.1002/ps.5560}, abstractNote={Abstract}, number={12}, journal={PEST MANAGEMENT SCIENCE}, publisher={Wiley}, author={Magarey, Roger D. and Klammer, Sarah S. H. and Chappell, Thomas M. and Trexler, Christina M. and Pallipparambil, Godshen R. and Hain, Ernie F.}, year={2019}, month={Dec}, pages={3129–3134} } @article{chappell_magarey_kurtz_trexler_pallipparambil_hain_2019, title={Perspective: service-based business models to incentivize the efficient use of pesticides in crop protection}, volume={75}, ISSN={["1526-4998"]}, url={https://doi.org/10.1002/ps.5523}, DOI={10.1002/ps.5523}, abstractNote={Abstract}, number={11}, journal={PEST MANAGEMENT SCIENCE}, publisher={Wiley}, author={Chappell, Thomas M. and Magarey, Roger D. and Kurtz, Ryan W. and Trexler, Christina M. and Pallipparambil, Godshen R. and Hain, Ernie F.}, year={2019}, month={Nov}, pages={2865–2872} } @article{magarey_chappell_trexler_pallipparambil_hain_2019, title={Social Ecological System Tools for Improving Crop Pest Management}, volume={10}, ISSN={["2155-7470"]}, DOI={10.1093/jipm/pmz004}, abstractNote={Abstract}, number={1}, journal={JOURNAL OF INTEGRATED PEST MANAGEMENT}, publisher={Oxford University Press (OUP)}, author={Magarey, Roger D. and Chappell, Thomas M. and Trexler, Christina M. and Pallipparambil, Godshen R. and Hain, Ernie F.}, year={2019}, month={Feb} } @article{koch_zhang_kaplan_lin_weglarz_trexler_2001, title={Numerical simulations of a gravity wave event over CCOPE. Part III: The role of a mountain-plains solenoid in the generation of the second wave episode}, volume={129}, ISSN={["0027-0644"]}, DOI={10.1175/1520-0493(2001)129<0909:NSOAGW>2.0.CO;2}, abstractNote={Abstract Mesoscale model simulations have been performed of the second episode of gravity waves observed in great detail in previous studies on 11–12 July 1981 during the Cooperative Convective Precipitation Experiment. The dominant wave simulated by the model was mechanically forced by the strong updraft associated with a mountain–plains solenoid (MPS). As this updraft impinged upon a stratified shear layer above the deep, well-mixed boundary layer that developed due to strong sensible heating over the Absaroka Mountains, the gravity wave was created. This wave rapidly weakened as it propagated eastward. However, explosive convection developed directly over the remnant gravity wave as an eastward-propagating density current produced by a rainband generated within the MPS leeside convergence zone merged with a westward-propagating density current in eastern Montana. The greatly strengthened cool pool resulting from this new convection then generated a bore wave that appeared to be continuous with the move...}, number={5}, journal={MONTHLY WEATHER REVIEW}, author={Koch, SE and Zhang, FQ and Kaplan, ML and Lin, YL and Weglarz, R and Trexler, CM}, year={2001}, pages={909–933} } @article{trexler_koch_2000, title={The life cycle of a mesoscale gravity wave as observed by a network of Doppler wind profilers}, volume={128}, ISSN={["0027-0644"]}, DOI={10.1175/1520-0493(2000)128<2423:TLCOAM>2.0.CO;2}, abstractNote={Abstract For the first time, an analysis has been made of the evolving vertical structure of a long-lived mesoscale gravity wave that exerted a strong influence upon the precipitation distribution across a large area. This paper describes this gravity wave system on 14 February 1992, which was observed using a combination of a surface mesonetwork, digital satellite and radar imagery, and several Doppler wind profilers. The resulting vertical structures are compared to the predictions of linear stability theory. Since the signature of the gravity waves in the profiler vertical beam data was often complicated by the presence of precipitation, a kinematic method was developed for estimating the vertical air motions during these periods. The resultant time–height fields show vertical and horizontal winds that are consistent with a gravity wave conceptual model, the microbarograph traces, and the cloud and precipitation patterns. In the early stages of development, a strong vertically erect wave of depression ...}, number={7}, journal={MONTHLY WEATHER REVIEW}, author={Trexler, CM and Koch, SE}, year={2000}, month={Jul}, pages={2423–2446} }