@article{chandi_york_jordan_beam_2011, title={Resistance to Acetolactate Synthase and Acetyl Co-A Carboxylase Inhibitors in North Carolina Italian Ryegrass (Lolium perenne)}, volume={25}, ISSN={["1550-2740"]}, DOI={10.1614/wt-d-11-00050.1}, abstractNote={Diclofop-resistant Italian ryegrass is widespread in southwestern North Carolina, and growers have resorted to using acetolactate synthase (ALS) inhibitors such as mesosulfuron and pyroxsulam to control this weed in wheat. In the spring of 2007, mesosulfuron failed to control Italian ryegrass in several wheat fields. Seed were collected from six fields in two counties and greenhouse studies were conducted to determine response to mesosulfuron and the acetyl-CoA carboxylase (ACCase) inhibitors diclofop and pinoxaden. All populations were resistant to diclofop and cross-resistant to pinoxaden. Five of the six populations were resistant to diclofop, pinoxaden, and mesosulfuron. An additional study with two biotypes confirmed cross-resistance to the ALS inhibitors imazamox, mesosulfuron, and pyroxsulam. Resistance to mesosulfuron was heritable.}, number={4}, journal={WEED TECHNOLOGY}, author={Chandi, Aman and York, Alan C. and Jordan, David L. and Beam, Josh B.}, year={2011}, pages={659–666} } @article{sosnoskie_culpepper_york_beam_macrae_2009, title={Sequential Applications for Mesosulfuron and Nitrogen Needed in Wheat}, volume={23}, ISSN={["1550-2740"]}, DOI={10.1614/WT-09-019.1}, abstractNote={Mesosulfuron is often applied to wheat at a time of year when top-dress nitrogen is also applied. Current labeling for mesosulfuron cautions against applying nitrogen within 14 d of herbicide application. Soft red winter wheat response to mesosulfuron and urea ammonium nitrate (UAN) applied sequentially and in mixtures was determined at three locations in North Carolina and Georgia during 2005 and 2006. Mesosulfuron at 0, 15, and 30 g ai/ha was applied in water to wheat at Feekes growth stage (GS) 3 followed by UAN at 280 L/ha 2 h, 7 d, 14 d, and 21 d after mesosulfuron. Mesosulfuron applied in UAN was also evaluated in 2006. Mesosulfuron injured wheat 6 to 9% in 2005 and 12 to 23% in 2006 when UAN was applied 2 h or 7 d after the herbicide. Wheat injury did not exceed 8% when UAN was applied 14 or 21 d after the herbicide. Greatest injury, 35 to 40%, was noted when mesosulfuron and UAN were combined. Wheat yield was unaffected by mesosulfuron or time of UAN application in 2005. In 2006, yield was affected by the timing of UAN application relative to mesosulfuron; wheat yield increased as the interval, in days, between UAN and herbicide applications increased. To avoid crop injury and possible yield reduction, mesosulfuron and UAN applications should be separated by at least 7 to 14 d. These findings are consistent with precautions on the mesosulfuron label.}, number={3}, journal={WEED TECHNOLOGY}, author={Sosnoskie, Lynn M. and Culpepper, A. Stanley and York, Alan C. and Beam, Josh B. and MacRae, Andrew W.}, year={2009}, pages={404–407} } @article{lancaster_beam_lanier_jordan_johnson_2007, title={Compatibility of diclosulam with postemergence herbicides and fungicides}, volume={21}, ISSN={["0890-037X"]}, DOI={10.1614/WT-07-028.1}, abstractNote={Diclosulam is registered for residual and postemergence control of several broadleaf weeds and suppression of annual sedges in peanut in the southeastern United States. Many producers apply herbicides and other pesticides simultaneously to increase the spectrum of pest control or to increase efficiency of operations. However, compatibility of coapplication of pesticides is a concern. Field trials were conducted to evaluate the compatibility of diclosulam with other herbicides and fungicides. Horseweed control by diclosulam in combination with glyphosate, sulfosate, or paraquat was compared to combinations of these herbicides with flumioxazin, tribenuron plus thifensulfuron, or 2,4-D. All treatments that contained diclosulam controlled horseweed at least 86%. Broadleaf signalgrass control by clethodim and sethoxydim was not affected by diclosulam; however, large crabgrass control was reduced when graminicides were coapplied with diclosulam. Common ragweed control was reduced when diclosulam was applied with chlorothalonil and pyraclostrobin but not by azoxystrobin or tebuconazole.}, number={4}, journal={WEED TECHNOLOGY}, author={Lancaster, Sarah H. and Beam, Joshua B. and Lanier, James E. and Jordan, David L. and Johnson, P. Dewayne}, year={2007}, pages={869–872} } @article{lancaster_beam_lanier_jordan_johnson_2007, title={Weed and peanut (Arachis hypogaea) response to diclosularn applied POST}, volume={21}, ISSN={["0890-037X"]}, DOI={10.1614/WT-06-151.1}, abstractNote={Diclosulam is generally applied either PPI or PRE to peanut to control certain broadleaf weeds and suppress sedges. Research was conducted to determine efficacy and peanut response to POST applications of diclosulam at 9, 13, 18, and 27 g ai/ha. Efficacy of diclosulam was affected by application rate and environment. Common ragweed control ranged from 60 to 100%, entireleaf morningglory control from 56 to 100%, marestail control from 78 to 85%, and nodding spurge from 50 to 97%. Smooth pigweed and common lambsquarters were both controlled less than 35%. Diclosulam controlled yellow nutsedge and eclipta less than 70 and 80%, respectively. In separate experiments, diclosulam and imazapic controlled dogfennel more effectively than acifluorfen, bentazon, imazethapyr, lactofen, paraquat, or 2,4-DB. Visual estimates of peanut injury were 15% or less for all rates during both years. Peanut yield ranged from 3,340 to 3,730 kg/ha in 2002 and 5,230 to 5,820 kg/ha in 2003. Foliar injury and peanut pod yield were influenced by diclosulam rate, although no clear relation was evident. Cultivar and diclosulam rate did not interact with respect to visual injury or pod yield. Nomenclature: Acifluorfen, bentazon, diclosulam, imazapic, imazethapyr, lactofen, paraquat, 2,4-DB, common lambsquarters, Chenopodium album L. CHEAL, common ragweed, Ambrosia artemisiifolia L. AMBEL, dogfennel, Eupatorium capillifolium (Lam.) Small EUPCP, eclipta, Eclipta prostrata L. ECLAL, entireleaf morningglory, Ipomoea hederaceae var integriscula Gray IPOHG, marestail, Conyza canadensis (L.) Cronq. ERICA, nodding spurge, Chamaesyce nutans (Lag.) Small EPHNU, smooth pigweed, Amaranthus hybridus L. AMACH, yellow nutsedge, Cyperus esculentus L. #CYPES, peanut, Arachis hypogaea L. ‘NC-V 11’ ‘Perry’}, number={3}, journal={WEED TECHNOLOGY}, author={Lancaster, Sarah H. and Beam, Joshua B. and Lanier, James E. and Jordan, David L. and Johnson, P. Dewayne}, year={2007}, pages={618–622} } @article{york_beam_culpepper_2005, title={Control of volunteer glyphosate-resistant soybean in cotton}, volume={9}, ISBN={1524-3303}, number={2}, journal={Journal of Cotton Science (Online)}, author={York, A. C. and Beam, J. B. and Culpepper, A. S.}, year={2005}, pages={102} } @article{beam_jordan_york_isleib_bailey_mckemie_spears_johnson_2002, title={Influence of prohexadione calcium on pod yield and pod loss of peanut}, volume={94}, DOI={10.2134/agronj2002.9550}, abstractNote={Excessive vegetative growth of peanut (Arachis hypogaea L.) can make digging and inverting operations less efficient. Reducing vine growth by applying a suitable plant growth regulator would be an efficient way to manage peanut vines. Pod yield, market grade factors, and gross economic value of peanut treated with prohexadione calcium (calcium salt of 3,5-dioxo-4 propionylcyclohexanecarboxylic acid) were evaluated at 19 sites in North Carolina during 1999 and 2000. Experiments were also conducted at two locations each during 1999 and 2000 to determine the effect of prohexadione Ca, digging date, and lifting (shaking peanut vines after digging to remove soil before combining) on combined yield, market grade factors, gross economic value, seed germination, and pod loss of the virginia market-type cultivar NC 12C. Prohexadione Ca at 140 g a.i. ha -1 , applied at 50% row closure and repeated 2 wk later, increased row visibility at harvest, pod yield by 310 kg ha -1 , and gross economic value of quota peanut by $223 ha -1 when pooled over 19 sites. Prohexadione Ca increased combined yield by 220 kg ha -1 and decreased percent pod loss by 4% regardless of digging date and lifting treatment compared with nontreated peanut. Prohexadione Ca did not affect maximum yield (sum of pods remaining in soil and on the soil surface and pods that were combined) or germination of peanut seed. These data suggest that increased combined yield noted following application of prohexadione Ca can be partially attributed to decreased pod loss.}, number={2}, journal={Agronomy Journal}, author={Beam, J. B. and Jordan, D. L. and York, A. C. and Isleib, T. G. and Bailey, J. E. and McKemie, T. E. and Spears, J. F. and Johnson, P. D.}, year={2002}, pages={331–336} }