@article{porbeni_shin_shuai_wang_white_jia_tonelli_2005, title={Morphology and dynamics of the poly(epsilon-caprolactone)-b-poly(L-lactide) diblock copolymer and its inclusion compound with alpha-cyclodextrin: A solid-state C-13 NMR study}, volume={43}, ISSN={["1099-0488"]}, DOI={10.1002/polb.20490}, abstractNote={Abstract}, number={15}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Porbeni, FE and Shin, ID and Shuai, XT and Wang, XW and White, JL and Jia, X and Tonelli, AE}, year={2005}, month={Aug}, pages={2086–2096} } @article{rusa_shuai_shin_bullions_wei_porbeni_lu_huang_fox_tonelli_2004, title={Controlling the behaviors of biodegradable/bioabsorbable polymers with cyclodextrins}, volume={12}, ISSN={["1572-8919"]}, DOI={10.1023/B:JOOE.0000038547.36750.78}, number={3}, journal={JOURNAL OF POLYMERS AND THE ENVIRONMENT}, author={Rusa, CC and Shuai, X and Shin, ID and Bullions, TA and Wei, M and Porbeni, FE and Lu, J and Huang, L and Fox, J and Tonelli, AE}, year={2004}, month={Jul}, pages={157–163} } @misc{rusa_wei_bullions_rusa_gomez_porbeni_wang_shin_balik_white_et al._2004, title={Controlling the polymorphic behaviors of semicrystalline polymers with cyclodextrins}, volume={4}, ISSN={["1528-7505"]}, DOI={10.1021/cg049821w}, abstractNote={We present a review of our initial studies concerning the control of polymorphism in semicrystalline polymers with cyclodextrins (CDs). CDs are cyclic starch oligomers with six (α-CD), seven (β-CD), and eight (γ-CD) α-1,4-linked glucose units possessing bracelet structures with hydrophobic and hydrophilic interiors and exteriors, respectively. They are able to act as hosts to form noncovalent inclusion compounds (ICs) with a large variety of guest molecules, including a wide range of high molecular weight guest polymers. In polymer-CD-ICs, the CD host crystalline lattice consists of hexagonally packed CD stacks with guest polymers occupying the narrow channels (∼0.5−1.0 nm) extending down the interiors of the stacked CDs. As a consequence, the included guest polymers must adopt highly extended conformations and are segregated from neighboring guest polymer chains. When the host CDs are appropriately removed from polymer-CD-ICs, the included guest polymers are forced to coalesce into a pure polymer solid, ...}, number={6}, journal={CRYSTAL GROWTH & DESIGN}, author={Rusa, CC and Wei, M and Bullions, TA and Rusa, M and Gomez, MA and Porbeni, FE and Wang, XG and Shin, ID and Balik, CM and White, JL and et al.}, year={2004}, pages={1431–1441} } @article{bullions_edeki_porbeni_wei_shuai_rusa_tonelli_2003, title={Intimate blend of poly(ethylene terephthalate) and poly(ethylene 2,6-naphthalate) via formation with and coalescence from their common inclusion compound with gamma-cyclodextrin}, volume={41}, ISSN={["1099-0488"]}, DOI={10.1002/polb.10366}, abstractNote={Abstract}, number={2}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Bullions, TA and Edeki, EM and Porbeni, FE and Wei, M and Shuai, X and Rusa, CC and Tonelli, AE}, year={2003}, month={Jan}, pages={139–148} } @article{shuai_wei_porbeni_bullions_tonelli_2002, title={Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin. 2: A novel way to regulate the biodegradation behavior of biodegradable block copolymers}, volume={3}, ISSN={["1526-4602"]}, DOI={10.1021/bm015609m}, abstractNote={A biodegradable block copolymer (PCL-b-PLLA, M(n) = 1.72 x 10(4), M(w)/M(n) = 1.37) of poly(epsilon-caprolactone) (PCL) and poly(L-lactide) (PLLA) with very low crystallinity was obtained by forming the inclusion complex between alpha-cyclodextrin molecules and PCL-b-PLLA followed by coalescence of the guest polymer chains. Films of the as-synthesized and coalesced copolymer samples, PCL and PLLA homopolymers of approximately the same chain lengths as the corresponding blocks of PCL-b-PLLA, and a physical blend of PCL/PLLA homopolymers with the same molar composition as PCL-b-PLLA were prepared by melt-compression molding between Teflon plates. Subsequently, the in vitro biodegradation behavior of these films was studied in phosphate buffer solution containing lipase from Rhizopus arrhizus, by means of ultraviolet spectra, attenuated total reflectance FTIR spectra, differential scanning calorimetry, wide-angle X-ray diffraction measurements, and weight loss analysis. PCL segments were found to degrade much faster than PLLA segments, both in the pure state and in copolymer or blend samples. Consistent with our expectation, suppression of the phase separation, as well as a decrease of crystallinity, in the coalesced copolymer sample led to a much faster enzymatic degradation than that of either as-synthesized copolymer or the PCL/PLLA physical blend sample, especially during the early stages of biodegradation. Thus the biodegradation behavior of biodegradable block copolymers, which is of decisive importance in drug delivery and controlled release systems, may be regulated by the novel and convenient means recently reported by us.(1)}, number={1}, journal={BIOMACROMOLECULES}, author={Shuai, XT and Wei, M and Porbeni, FE and Bullions, TA and Tonelli, AE}, year={2002}, pages={201–207} } @article{shuai_porbeni_wei_bullions_tonelli_2002, title={Formation of inclusion complexes of poly(3-hydroxybutyrate)s with cyclodextrins. 1. Immobilization of atactic poly(R,S-3-hydroxybutyrate) and miscibility enhancement between poly(R,S-3-hydroxybutyrate) and poly(epsilon-caprolactone)}, volume={35}, ISSN={["0024-9297"]}, DOI={10.1021/ma011954s}, abstractNote={Atactic poly(R,S-3-hydroxybutyrate) (a-PHB) was synthesized by anionic polymerization of β-butyrolactone with potassium methoxide as an initiator. This completely amorphous polyester is capable of forming a crystalline inclusion complex (IC) with γ-cyclodextrin (γ-CD) adopting a channel structure. There is no evidence showing that a-PHB may form IC with either α-CD or β-CD. On the basis of these discoveries, a common IC was formed with two polymer chains, a-PHB and poly(e-caprolactone) (PCL), randomly distributed into the channels of γ-CD-PCL/a-PHB IC crystals. Nevertheless, in the formation of the common IC, PCL inclusion appears superior to a-PHB inclusion. Therefore, the molar ratio of a-PHB and PCL in the coalesced sample has been detected to be lower than that used in the formation of the common IC. Washing the common IC with hot water removed the γ-CD, and the molecular chains of the two polymers were coalesced. Very interestingly, only a single glass transition temperature (Tg), dependent on the co...}, number={8}, journal={MACROMOLECULES}, author={Shuai, XT and Porbeni, FE and Wei, M and Bullions, T and Tonelli, AE}, year={2002}, month={Apr}, pages={3126–3132} } @article{shuai_porbeni_wei_bullions_tonelli_2002, title={Inclusion complex formation between alpha,gamma-cyclodextrins and a triblock copolymer and the cyclodextrin-type-dependent microphase structures of their coalesced samples}, volume={35}, ISSN={["0024-9297"]}, DOI={10.1021/ma012085+}, abstractNote={A triblock copolymer (PCL−PPG−PCL, Mn = 1.38 × 104) of poly(e-caprolactone) (PCL) and poly(propylene glycol) (PPG) was synthesized by ring-opening polymerization of e-caprolactone. Cyclodextrin (CD)-type-dependent formation of inclusion complexes (ICs) between cyclodextrins and this triblock copolymer was studied. Only PCL blocks were included as guests in the IC formed with α-cyclodextrin (α-CD), while both PCL and PPG blocks were included in the IC formed with γ-cyclodextrin (γ-CD). As a result, the copolymer coalesced from its IC crystals with α-CD showed an increased crystallinity, while to the contrary, the copolymer coalesced from its IC crystals with γ-CD exhibited a decreased crystallinity, when both were compared to the as-synthesized triblock copolymer. Fourier transform infrared (FTIR) spectra, 13C CP/MAS solid-state NMR, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and wide-angle X-ray diffraction (WAXD) measurements were employed to study the formation of ICs as ...}, number={6}, journal={MACROMOLECULES}, author={Shuai, XT and Porbeni, FE and Wei, M and Bullions, T and Tonelli, AE}, year={2002}, month={Mar}, pages={2401–2405} } @article{wei_davis_urban_song_porbeni_wang_white_balik_rusa_fox_et al._2002, title={Manipulation of nylon-6 crystal structures with its alpha-cyclodextrin inclusion complex}, volume={35}, ISSN={["0024-9297"]}, DOI={10.1021/ma020765m}, abstractNote={We successfully formed an inclusion complex between nylon-6 and α-cyclodextrin and attempted to use the formation and subsequent disassociation of the nylon-6/α-cyclodextrin inclusion complex to manipulate the polymorphic crystal structures, crystallinity, and orientation of nylon-6. Formation of the inclusion complex was verified by Fourier transform infrared (FTIR) spectroscopy, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), and CP/MAS 13C NMR. After obtaining the inclusion complex of nylon-6 and α-cyclodextrin, the sample was treated in an acid environment to remove the host α-cyclodextrin and coalesce the nylon-6 guest polymer. Examination of as-received and IC coalesced nylon-6 samples showed that the α-form crystalline phase of nylon-6 is the dominant component in the coalesced sample. X-ray diffraction patterns demonstrate that the γ-form is significantly suppressed in the coalesced sample. Along with the change in crystal form, an increase in crystallinity of ∼80% wa...}, number={21}, journal={MACROMOLECULES}, author={Wei, M and Davis, W and Urban, B and Song, YQ and Porbeni, FE and Wang, XW and White, JL and Balik, CM and Rusa, CC and Fox, J and et al.}, year={2002}, month={Oct}, pages={8039–8044} } @article{bullions_wei_porbeni_gerber_peet_balik_white_tonelli_2002, title={Reorganization of the structures, morphologies, and conformations of bulk polymers via coalescence from polymer-cyclodextrin inclusion compounds}, volume={40}, ISSN={["1099-0488"]}, DOI={10.1002/polb.10152}, abstractNote={Abstract}, number={10}, journal={JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS}, author={Bullions, TA and Wei, M and Porbeni, FE and Gerber, MJ and Peet, J and Balik, M and White, JL and Tonelli, AE}, year={2002}, month={May}, pages={992–1012} } @article{shuai_probeni_wei_bullions_tonelli_2002, title={Stereoselectivity in the formation of crystalline inclusion complexes of poly(3-hydroxybutyrate)s with cyclodextrins}, volume={35}, ISSN={["0024-9297"]}, DOI={10.1021/ma012038h}, abstractNote={ADVERTISEMENT RETURN TO ISSUEPREVNoteNEXTStereoselectivity in the Formation of Crystalline Inclusion Complexes of Poly(3-hydroxybutyrate)s with CyclodextrinsXintao Shuai, Francis E. Porbeni, Min Wei, Todd Bullions, and Alan E. TonelliView Author Information Fiber and Polymer Science Program, College of Textiles, North Carolina State University, Raleigh, North Carolina 27695-8301 Cite this: Macromolecules 2002, 35, 9, 3778–3780Publication Date (Web):March 26, 2002Publication History Received21 November 2001Revised15 February 2002Published online26 March 2002Published inissue 1 April 2002https://pubs.acs.org/doi/10.1021/ma012038hhttps://doi.org/10.1021/ma012038hbrief-reportACS PublicationsCopyright © 2002 American Chemical SocietyRequest reuse permissionsArticle Views421Altmetric-Citations62LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose SUBJECTS:Cadmium sulfide,Cavities,Conformation,Physical and chemical processes,Polymers Get e-Alerts}, number={9}, journal={MACROMOLECULES}, author={Shuai, XT and Probeni, FE and Wei, M and Bullions, T and Tonelli, AE}, year={2002}, month={Apr}, pages={3778–3780} } @article{huang_gerber_taylor_lu_tapaszi_wutkowski_hill_funahlee_harvey_rusa_et al._2001, title={Creation of polymer films with novel structures and properties by processing with inclusion compounds}, volume={790}, DOI={10.1021/bk-2001-0790.ch014}, abstractNote={We have begun to fabricate polymer films whose compositions, structures, and properties may be developed and controlled during their formation with inclusion compounds (ICs). ICs formed with either urea(U) or cyclodextrin(CD) hosts and containing guest polymers or small-molecule additives are embedded into carrier polymer films either by solution casting or melt pressing methods. Once embedded, the IC crystals are left undisturbed or are disrupted by solvent treatment, which removes the host (U or CD), but not the carrier polymer nor the coalesced IC-guest. In this manner polymer-polymer composite and additive-filled films have been fabricated. Employment of polymer-U or CD-ICs produces composite films containing two different polymers or two populations of the same polymer. In the latter case, the morphologies of the carrier and IC-coalesced chains may differ, because of chain-folded and chain-extended crystallization, respectively. We may, for example, control film permeabilities by either controlling the compositions or the morphologies of}, journal={ACS Symposium Series}, author={Huang, L. and Gerber, M. and Taylor, H. and Lu, J. and Tapaszi, E. and Wutkowski, M. and Hill, M. and Funahlee, F. N. and Harvey, A. and Rusa, C. C. and et al.}, year={2001} } @article{porbeni_edeki_shin_tonelli_2001, title={Formation and characterization of the inclusion complexes between poly(dimethylsiloxane) and polyacrylonitrile with gamma-cyclodextrin}, volume={42}, ISSN={["1873-2291"]}, DOI={10.1016/S0032-3861(01)00181-1}, abstractNote={Poly(dimethylsiloxane) and polyacrylonitrile have been observed to form inclusion complexes (ICs) with γ-cyclodextrin. These complexes were prepared by a solution-heating technique. Their structural features were observed with the use of: FTIR, TGA, WAXS, and 13C-NMR. FTIR identifies absorption peaks of the guest polymer molecules in the cyclodextrin. Thermal decomposition shows that the ICs have a higher thermal stability than the pure γ-cyclodextrin. The wide angle X-ray diffraction of the complexes indicates that the ICs form channel structures. CP-MAS 13C-NMR spectra of the ICs show that γ-cyclodextrin, in the presence of a polymer guest, adopts a more symmetric conformation when compared to its pure state.}, number={16}, journal={POLYMER}, author={Porbeni, FE and Edeki, EM and Shin, ID and Tonelli, AE}, year={2001}, month={Jul}, pages={6907–6912} } @article{shuai_porbeni_wei_shin_tonelli_2001, title={Formation of and coalescence from the inclusion complex of a biodegradable block copolymer and alpha-cyclodextrin: A novel means to modify the phase structure of biodegradable block copolymers}, volume={34}, ISSN={["1520-5835"]}, DOI={10.1021/ma0109626}, abstractNote={A well-defined biodegradable block copolymer (PCL-b-PLLA, Mn = 1.72 × 104, Mw/Mn = 1.37) of poly(e-caprolactone) (PCL) and poly(l-lactide) (PLLA) was synthesized by a two-step ring-opening polymerization of e-caprolactone and l-lactide. Furthermore, we found that α-cyclodextrin (α-CD) molecules may simultaneously thread onto both PLLA and PCL blocks of PCL-b-PLLA to form an inclusion complex (IC). Washing the copolymer−α-CD IC with hot water removed the α-CD, and the copolymer chains were coalesced. Very interestingly, the coalesced copolymer sample shows a great suppression in microphase separation, compared with the as-synthesized copolymer. In contrast to the significant decrease in crystallinity of ca. 50% and up to 79% for PCL and PLLA blocks, respectively, the melting points (Tm's) and the cold crystallization temperatures (Tcc's) of both PCL and PLLA blocks of the coalesced sample increased in DSC measurements. These results may imply that only small amounts of more extended crystals, with less cha...}, number={21}, journal={MACROMOLECULES}, author={Shuai, XT and Porbeni, FE and Wei, M and Shin, ID and Tonelli, AE}, year={2001}, month={Oct}, pages={7355–7361} }