@article{corl_harrell_moon_phillips_weaver_campbell_arthington_odle_2007, title={Effect of animal plasma proteins on intestinal damage and recovery of neonatal pigs infected with rotavirus}, volume={18}, ISSN={["1873-4847"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-36249015472&partnerID=MN8TOARS}, DOI={10.1016/j.jnutbio.2006.12.011}, abstractNote={Rotaviruses infect and elicit diarrhea in neonates of most mammalian species and cause 800,000 infant deaths a year. We used neonatal piglets to study the effects of dietary animal plasma proteins on intestinal health following rotavirus infection. Plasma protein contains a diverse mixture of functional components with biological activity and improves the health of animals challenged with other diarrhea-causing pathogens. In a 2×2 factorial design, we compared plasma protein- and soy protein-based diets in rotavirus-infected and noninfected piglets to determine if plasma protein reduced acute rotavirus intestinal damage or improved recovery. All infected animals shed rotavirus particles in their feces. Infected, plasma protein-fed piglets maintained growth rates similar to noninfected piglets in the first 3 days of infection; however, soy protein-fed piglets experienced reduced gains. Furthermore, infected, plasma protein-fed piglets showed no clinical signs of diarrhea. Infection reduced intestinal villus height and the villus height/crypt depth ratio by Day 3 of infection; however, reductions were not attenuated with dietary plasma protein. Infected, plasma protein-fed pigs maintained greater intestinal mucosa protein and estimated total lactase activity than infected, soy protein-fed piglets. Plasma proteins contain growth factors that may aid in rate of recovery as well as virus-binding proteins that may reduce infection pressure in the intestine. These data, combined with findings from other studies using plasma proteins in animal models of diarrhea, indicate the potential for using plasma proteins to improve the health of diarrheic neonates.}, number={12}, journal={JOURNAL OF NUTRITIONAL BIOCHEMISTRY}, author={Corl, Benjamin A. and Harrell, Robert J. and Moon, Hong Kil and Phillips, Oulayvahn and Weaver, Eric M. and Campbell, Joy M. and Arthington, John D. and Odle, Jack}, year={2007}, month={Dec}, pages={778–784} } @article{rhoads_corl_harrell_niu_gatlin_phillips_blikslager_moeser_wu_odle_et al._2007, title={Intestinal ribosomal p70(S6K) signaling is increased in piglet rotavirus enteritis}, volume={292}, ISSN={0193-1857 1522-1547}, url={http://dx.doi.org/10.1152/ajpgi.00468.2006}, DOI={10.1152/ajpgi.00468.2006}, abstractNote={Recent identification of the mammalian target of rapamycin (mTOR) pathway as an amino acid-sensing mechanism that regulates protein synthesis led us to investigate its role in rotavirus diarrhea. We hypothesized that malnutrition would reduce the jejunal protein synthetic rate and mTOR signaling via its target, ribosomal p70 S6 kinase (p70S6K). Newborn piglets were artificially fed from birth and infected with porcine rotavirus on day 5 of life. Study groups included infected (fully fed and 50% protein calorie malnourished) and noninfected fully fed controls. Initially, in “worst-case scenario studies,” malnourished infected piglets were killed on days 1, 3, 5, and 11 postinoculation, and jejunal samples were compared with controls to determine the time course of injury and p70S6Kactivation. Using a 2 × 2 factorial design, we subsequently determined if infection and/or malnutrition affected mTOR activation on day 3. Western blot analysis and immunohistochemistry were used to measure total and phosphorylated p70S6K; [3H]phenylalanine incorporation was used to measure protein synthesis; and lactase specific activity and villus-crypt dimensions were used to quantify injury. At the peak of diarrhea, the in vitro jejunal protein synthetic rate increased twofold (compared with the rate in the uninfected pig jejunum), concomitant with increased jejunal p70S6Kphosphorylation (4-fold) and an increased p70S6Klevel (3-fold, P < 0.05). Malnutrition did not alter the magnitude of p70S6Kactivation. Immunolocalization revealed that infection produced a major induction of cytoplasmic p70S6Kand nuclear phospho-p70S6K, mainly in the crypt. A downregulation of semitendinosus muscle p70S6Kphosphorylation was seen at days 1–3 postinoculation. In conclusion, intestinal activation of p70S6Kwas not inhibited by malnutrition but was strongly activated during an active state of mucosal regeneration.}, number={3}, journal={American Journal of Physiology-Gastrointestinal and Liver Physiology}, publisher={American Physiological Society}, author={Rhoads, J. Marc and Corl, Benjamin A. and Harrell, Robert and Niu, Xiaomei and Gatlin, Lori and Phillips, Oulayvanh and Blikslager, Anthony and Moeser, Adam and Wu, Guoyao and Odle, Jack and et al.}, year={2007}, month={Mar}, pages={G913–G922} } @article{mathews_oliver_phillips_odle_diersen-schade_harrell_2002, title={Comparison of triglycerides and phospholipids as supplemental sources of dietary long-chain polyunsaturated fatty acids in piglets}, volume={132}, ISSN={["1541-6100"]}, DOI={10.1093/jn/131.10.3081}, abstractNote={Addition of arachidonic acid (AA) and docosahexaenoic acid (DHA) to infant formula promotes visual and neural development. This study was designed to determine whether the source of dietary long-chain polyunsaturated fatty acids (LCPUFA) affected overall animal health and safety. Piglets consumed ad libitum from 1 to 16 d of age a skim milk-based formula with different fat sources added to provide 50% of the metabolizable energy. Treatment groups were as follows: control (CNTL; no added LCPUFA), egg phospholipid (PL), algal/fungal triglyceride (TG) oils, TG plus PL (soy lecithin source) added to match phospholipid treatment (TG + PL) and essential fatty acid deficient (EFAD). Formulas with LCPUFA provided 0.6 and 0.3 g/100 g total fatty acids as AA and DHA, respectively. CNTL piglets had 40% longer ileal villi than PL piglets (P < 0.03), but the TG group was not different from the CNTL group. Gross liver histology did not differ among any of the formula-fed groups (P > 0.1). Apparent dry matter digestibility was 10% greater in CNTL, TG and TG + PL groups compared with PL piglets (P < 0.002). No differences in alanine aminotransferase were detected among treatments, but aspartate aminotransferase was elevated (P < 0.03) in PL piglets compared with TG + PL piglets. Total plasma AA concentration was greater in the TG group compared with CNTL piglets (P < 0.05). Total plasma DHA concentrations were greater in TG piglets compared with PL (P < 0.06) or CNTL (P < 0.02) piglets. These data demonstrate that the algal/fungal TG sources of DHA and AA may be a more appropriate supplement for infant formulas than the egg PL source based on piglet plasma fatty acid profiles and apparent dry matter digestibilities.}, number={10}, journal={JOURNAL OF NUTRITION}, author={Mathews, SA and Oliver, WT and Phillips, OT and Odle, J and Diersen-Schade, DA and Harrell, RJ}, year={2002}, month={Oct}, pages={3081–3089} }