@article{reed_arkun_berkman_elmasry_zavada_luen_reed_bedair_2005, title={Effect of doping on the magnetic properties of GaMnN: Fermi level engineering}, volume={86}, ISSN={["1077-3118"]}, DOI={10.1063/1.1881786}, abstractNote={GaMnN dilute magnetic semiconductor samples, prepared by metalorganic chemical vapor deposition, are shown to exhibit ferromagnetism or even paramagnetism depending upon the type and concentration of extrinsic impurity present in the film. In addition, GaMnN deposited using growth parameters normally yielding a nonferromagnetic film becomes strongly ferromagnetic with the addition of magnesium, an acceptor dopant. Based upon these observations, it seems that ferromagnetism in this material system depends on the relative position of the Mn energy band and the Fermi level within the GaMnN band gap. Only when the Fermi level closely coincides with the Mn-energy level is ferromagnetism achieved. By actively engineering the Fermi energy to be within or near the Mn energy band, room temperature ferromagnetism is realized.}, number={10}, journal={APPLIED PHYSICS LETTERS}, author={Reed, MJ and Arkun, FE and Berkman, EA and Elmasry, NA and Zavada, J and Luen, MO and Reed, ML and Bedair, SM}, year={2005}, month={Mar} } @article{arkun_reed_berkman_el-masry_zavada_reed_bedair_2004, title={Dependence of ferromagnetic properties on carrier transfer at GaMnN/GaN : Mg interface}, volume={85}, ISSN={["1077-3118"]}, DOI={10.1063/1.1810216}, abstractNote={We report on the dependence of ferromagnetic properties of metalorganic chemical vapor deposition grown GaMnN films on carrier transfer across adjacent layers. We found that the magnetic properties of GaMnN, as a part of GaMnN∕GaN:Mg heterostructures, depend on the thickness of both the GaMnN film and the adjacent GaN:Mg layer and on the presence of a wide band gap barrier at this interface. These results are explained based on the occupancy of the Mn energy band and how the occupancy can be altered due to carrier transfer at the GaMnN∕GaN:Mg interfaces.}, number={17}, journal={APPLIED PHYSICS LETTERS}, author={Arkun, FE and Reed, MJ and Berkman, EA and El-Masry, NA and Zavada, JM and Reed, ML and Bedair, SM}, year={2004}, month={Oct}, pages={3809–3811} } @article{shin_arkun_thomson_miraglia_preble_schlesser_wolter_sitar_davis_2002, title={Growth and decomposition of bulk GaN: role of the ammonia/nitrogen ratio}, volume={236}, ISSN={["0022-0248"]}, DOI={10.1016/S0022-0248(02)00825-4}, abstractNote={Gallium nitride crystals grown via vapor-phase transport processes that incorporate ammonia as the only source of nitrogen below atmospheric pressures experience significant surface roughening and the eventual cessation of growth. Investigations of these phenomena in this research, and in the context of the discovery of a non-ceasing process route to larger GaN crystals, showed that the RMS values of the surface roughness of single crystal GaN (0 0 0 1) films exposed to pure ammonia flowing at 60 sccm for 2 h at 1130°C increased from the as-received value of 3.7–6.8 nm, 21.4 and 32.6 nm at 100, 430 and 760 Torr, respectively. Quadrupole mass spectrometry revealed that the concentrations of H2 and N2 measurably increased at pressures above 400 Torr. The primary reason for the increased roughness above 430 Torr was the enhanced etching of GaN via reaction with atomic and molecular hydrogen derived from the dissociation of the ammonia. At lower pressures, the decomposition of the GaN via the formation and evaporation of N2 and Ga increased in importance relative to etching for enhancing surface roughness. Dilution with nitrogen reduced the amount of hydrogen generated from the dissociation of the ammonia. The GaN surface annealed at 1130°C and 430 Torr in ammonia diluted with 33 vol% N2 maintained the smoothest surface with a nominal RMS value of 10.4 nm. Mixtures with higher and lower percentages of N2 showed enhanced roughness under the same conditions. Use of this optimum gas mixture also allowed the seeded growth of a 1.5×1.5×2.0 mm3 GaN crystal and a 2.3×1.8×0.3 mm3 thick platelet with neither observable decomposition nor cessation of the growth over periods of 36 and 48 h, respectively.}, number={4}, journal={JOURNAL OF CRYSTAL GROWTH}, author={Shin, H and Arkun, E and Thomson, DB and Miraglia, P and Preble, E and Schlesser, R and Wolter, S and Sitar, Z and Davis, RF}, year={2002}, month={Mar}, pages={529–537} }