@article{nelson_grant_2006, title={Using direct competition to select for competent controllers in evolutionary robotics}, volume={54}, ISSN={["1872-793X"]}, DOI={10.1016/j.robot.2006.04.010}, abstractNote={Evolutionary robotics (ER) is a field of research that applies artificial evolution toward the automatic design and synthesis of intelligent robot controllers. The preceding decade saw numerous advances in evolutionary robotics hardware and software systems. However, the sophistication of resulting robot controllers has remained nearly static over this period of time. Here, we make the case that current methods of controller fitness evaluation are primary factors limiting the further development of ER. To address this, we define a form of fitness evaluation that relies on intra-population competition. In this research, complex neural networks were trained to control robots playing a competitive team game. To limit the amount of human bias or know-how injected into the evolving controllers, selection was based on whether controllers won or lost games. The robots relied on video sensing of their environment, and the neural networks required on the order of 150 inputs. This represents an order of magnitude increase in sensor complexity compared to other research in this field. Evolved controllers were tested extensively in real fully-autonomous robots and in simulation. Results and experiments are presented to characterize the training process and the acquisition of controller competency under different evolutionary conditions.}, number={10}, journal={ROBOTICS AND AUTONOMOUS SYSTEMS}, author={Nelson, Andrew L. and Grant, Edward}, year={2006}, month={Oct}, pages={840–857} } @article{nelson_chow_2002, title={Characterization of coil faults in an axial flux variable reluctance PM motor}, volume={17}, ISSN={["1558-0059"]}, DOI={10.1109/TEC.2002.801730}, abstractNote={Variable-reluctance (VR) and switch-reluctance (SR) motors have been proposed for use in applications requiring a degree of fault tolerance. A range of topologies, of brushless SR and VR permanent-magnet (PM) motors are not susceptible to some types of faults, such as phase-to-phase shorts, and can often continue to function in the presence of other faults. In particular, coil-winding faults in a single stator coil may have relatively little effect on motor performance but may affect overall motor reliability, availability, and longevity. It is important to distinguish between and characterize various winding faults for maintenance and diagnostic purposes. These fault characterization and analysis results are a necessary first step in the process of motor fault detection and diagnosis for this motor topology. This paper examines rotor velocity damping due to stator winding turn-to-turn short faults in a fault-tolerant axial flux VR PM motor. In this type of motor, turn-to-turn shorts, due to insulation failures, have similar I-V characteristics as coil faults resulting from other problems, such as faulty maintenance or damage due to impact. In order to investigate the effects of these coil faults, a prototype axial flux VR PM motor was constructed. The motor was equipped with experimental fault simulation stator windings capable of simulating these and other types of stator winding faults. This paper focuses on two common types of winding faults and their effects on rotor velocity in this type of motor.}, number={3}, journal={IEEE TRANSACTIONS ON ENERGY CONVERSION}, author={Nelson, AL and Chow, MY}, year={2002}, month={Sep}, pages={340–348} }