@article{schultz_hall_genzer_2007, title={Obtaining concentration profiles from computer simulation structure factors}, volume={40}, ISSN={["1520-5835"]}, DOI={10.1021/ma062836d}, abstractNote={The structure factor, S(q), is an important analysis tool for analyzing the structure of macromolecular crystals, 1,2 block copolymers, 3 micelles, 4 and the glass transition. 5 As the Fourier transform of the density profile, S(q) gives a quantitative description of the concentration fluctuations in a system as a function of the fluctuation frequency and direction. S(q) can be obtained experimentally from scattering experiments or can be extracted from simulation data on particle positions. In the past,S(q) has been used to determine the size and morphology of micelles, the degree of ordering, the identity of an ordered structure, and even the interaction strength between components of a copolymer. 6-8}, number={8}, journal={MACROMOLECULES}, author={Schultz, Andrew J. and Hall, Carol K. and Genzer, Jan}, year={2007}, month={Apr}, pages={2629–2632} } @article{schultz_hall_genzer_2005, title={Computer simulation of block copolymer/nanoparticle composites}, volume={38}, ISSN={["1520-5835"]}, DOI={10.1021/ma0496910}, abstractNote={Discontinuous molecular dynamics simulation is used to study the phase behavior of diblock copolymer/nanoparticle composites. The copolymers are modeled as chains of tangent hard-spheres with square shoulder repulsions between unlike species, while the nanoparticles are modeled as hard-spheres with a square shoulder repulsion with one of the copolymer blocks. The resulting phase diagrams are presented for composites containing nanoparticles of various sizes and interaction strengths and include lamellae, perforated lamellae, cylinders, and disordered phases. Composites containing large nanoparticles also exhibit two-phase coexistence between different copolymer phases or between a copolymer phase and a nanoparticle phase, depending on the nanoparticle interaction strength. We also present concentration profiles perpendicular to the lamellar interface for nanoparticles of different sizes and interaction strengths. Neutral nanoparticles concentrate at the interface between copolymer domains, while interacti...}, number={7}, journal={MACROMOLECULES}, author={Schultz, AJ and Hall, CK and Genzer, J}, year={2005}, month={Apr}, pages={3007–3016} } @article{schultz_hall_genzer_2004, title={Box length search algorithm for molecular simulation of systems containing periodic structures}, volume={120}, ISSN={["1089-7690"]}, DOI={10.1063/1.1636156}, abstractNote={We have developed a box length search algorithm to efficiently find the appropriate box dimensions for constant-volume molecular simulation of periodic structures. The algorithm works by finding the box lengths that equalize the pressure in each direction while maintaining constant total volume. Maintaining the volume at a fixed value ensures that quantitative comparisons can be made between simulation and experimental, theoretical or other simulation results for systems that are incompressible or nearly incompressible. We test the algorithm on a system of phase-separated block copolymers that has a preferred box length in one dimension. We also describe and test a Monte Carlo algorithm that allows the box lengths to change while maintaining constant volume. We find that the box length search algorithm converges at least two orders of magnitude more quickly than the variable box length Monte Carlo method. Although the box length search algorithm is not ergodic, it successfully finds the box length that minimizes the free energy of the system. We verify this by examining the free energy as determined by the Monte Carlo simulation.}, number={4}, journal={JOURNAL OF CHEMICAL PHYSICS}, author={Schultz, AJ and Hall, CK and Genzer, J}, year={2004}, month={Jan}, pages={2049–2055} } @article{schultz_hall_genzer_2002, title={Computer simulation of copolymer phase behavior}, volume={117}, ISSN={["1089-7690"]}, DOI={10.1063/1.1519839}, abstractNote={Discontinuous molecular dynamics simulation is used to study the phase behavior of diblock copolymers modeled as chains of tangent hard spheres with square shoulder repulsions between unlike species as a function of chain length, volume fraction and interaction strength (χ). The location of the order–disorder transition for a symmetric copolymer is close to the predictions of Fredrickson and Helfand. Our simulation results for packing fractions of 0.35, 0.40, and 0.45 and chain lengths 10 and 20 are summarized in phase diagrams which display disordered, lamellae, perforated lamellae (PL), cylindrical, and BCC spherical (S) phases in the χN versus f plane. These phase diagrams are consistent with phase diagrams from other simulation studies. Contrary to theoretical predictions we observe the PL phase near regions of predicted gyroid stability, and the S phase only in the systems with high packing fraction and long chain length. These discrepancies may be due to the short chain lengths considered, as they are less evident in the 20-bead chains than the 10-bead chains. We examine the structural spacing of the microphases and the variation of that spacing with χN. We also examine the internal energy and entropy and their variation with χN. Our results are consistent with self-consistent field theory results for the strong segregation limit.}, number={22}, journal={JOURNAL OF CHEMICAL PHYSICS}, author={Schultz, AJ and Hall, CK and Genzer, J}, year={2002}, month={Dec}, pages={10329–10338} } @misc{williams_schultz_geiser_carlson_kini_wang_kwok_whangbo_schirber_1991, title={ORGANIC SUPERCONDUCTORS - NEW BENCHMARKS}, volume={252}, ISSN={["1095-9203"]}, DOI={10.1126/science.252.5012.1501}, abstractNote={ Recent advances in the design and synthesis of organic synthetic metals have yielded materials that have the highest superconducting transition temperatures ( T c ≈ 13 kelvin) reported for these systems. These materials have crystal structures consisting of alternating layers of organic donor molecules and inorganic anions. Organic superconductors have various electronic and magnetic properties and crystal structures that are similar to those of the inorganic copper oxide superconductors (which have high T c values); these similarities include highly anisotropic conductivities, critical fields, and short coherence lengths. The largest number of organic superconductors, including those with the highest T c values, are charge-transfer salts derived from the electron donor molecule BEDT-TTF or ET [bis(ethylenedithio)-tetrathiafulvalene]. The synthesis and crystal structures of these salts are discussed; their electrical, magnetic, and band electronic structure properties and their many similarities to the copper oxide superconductors are treated as well. }, number={5012}, journal={SCIENCE}, author={WILLIAMS, JM and SCHULTZ, AJ and GEISER, U and CARLSON, KD and KINI, AM and WANG, HH and KWOK, WK and WHANGBO, MH and SCHIRBER, JE}, year={1991}, month={Jun}, pages={1501–1508} } @misc{williams_wang_emge_geiser_beno_leung_carlson_thorn_schultz_whangbo_1987, title={RATIONAL DESIGN OF SYNTHETIC METAL SUPERCONDUCTORS}, volume={35}, ISSN={["0079-6379"]}, DOI={10.1002/9780470166369.ch2}, abstractNote={Rational Design of Synthetic Metal Superconductors Jack M. Williams, Jack M. Williams Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorHau H. Wang, Hau H. Wang Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorThomas J. Emge, Thomas J. Emge Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorUrs Geiser, Urs Geiser Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorMark A. Beno, Mark A. Beno Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorPeter C. W. Leung, Peter C. W. Leung Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorK. Douglas Carlson, K. Douglas Carlson Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorRobert J. Thorn, Robert J. Thorn Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorArthur J. Schultz, Arthur J. Schultz Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorMyung-Hwan Whangbo, Myung-Hwan Whangbo Department of Chemistry, North Carolina State University, Raleigh, North CarolinaSearch for more papers by this author Jack M. Williams, Jack M. Williams Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorHau H. Wang, Hau H. Wang Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorThomas J. Emge, Thomas J. Emge Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorUrs Geiser, Urs Geiser Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorMark A. Beno, Mark A. Beno Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorPeter C. W. Leung, Peter C. W. Leung Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorK. Douglas Carlson, K. Douglas Carlson Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorRobert J. Thorn, Robert J. Thorn Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorArthur J. Schultz, Arthur J. Schultz Chemistry and Materials Science, Divisions Argonne, National Laboratory Argonne, IllinoisSearch for more papers by this authorMyung-Hwan Whangbo, Myung-Hwan Whangbo Department of Chemistry, North Carolina State University, Raleigh, North CarolinaSearch for more papers by this author Book Editor(s):Stephen J. Lippard, Stephen J. Lippard Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MassachusettsSearch for more papers by this author First published: 01 January 1987 https://doi.org/10.1002/9780470166369.ch2Citations: 201Book Series:Progress in Inorganic Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter contains sections titled: Introduction Material Syntheses Molecular and Crystal Structures of (ET)nXm Compounds Normal-State and Superconducting Properties of ET-Based Organic Conductors Spectroscopic Studies Band Electronic Structures of ET Salts Bis-Dithiolene Transition Metal Analogues of ET Concluding Remarks Addendum References D. S. Acker, R. J. Harder, W. R. Hertler, W. Mahler, L. R. Melby, R. E. Benson, and W. E. Mochel, J. Am. Chem. Soc., 82, 6408 (1960). 10.1021/ja01509a052 CASWeb of Science®Google Scholar H. Akamatu, H. Inokuchi, and Y. Matsunaga, Nature (London), 173, 168 (1954). 10.1038/173168a0 Web of Science®Google Scholar T. A. Albright, J. K. Burdett, and M.-H. Whangbo, Orbital Interactions in Chemistry, John Wiley & Sons, Inc., New York, 1985, Ch. 13. Google Scholar J. H. Ammeter, H.-B. Bürgi, J. C. Thibeault, and R. Hoffmann, J. Am. Chem. Soc., 100, 3686 (1978). 10.1021/ja00480a005 CASWeb of Science®Google Scholar J.-J. Andre, A. Bieber, and F. Gautier, Ann. Phys. (Paris), 145 (1976). Google Scholar A. Andrieux, P. M. Chaikin, C. Duroure, D. Jerome, C. Weyl, K. Bechgaard, and J. R. Andersen, J. Phys. (Les Ulis, Fr.), 40, 1199 (1979). 10.1051/jphys:0197900400120119900 CASWeb of Science®Google Scholar A. Andrieux, D. Jerome, and K. Bechgaard, J. Phys. Lett. (Les Ulis, Fr.), 42, L87 (1981). 10.1051/jphyslet:0198100420408700 CASWeb of Science®Google Scholar M. Asplund, S. Jagner, and M. Nilsson, Acta Chem. Scand. A, 38, 57 (1984). 10.3891/acta.chem.scand.38a-0057 Web of Science®Google Scholar B. A. Averill and S. M. Kauzlarich, Mol. Cryst. Liq. Cryst., 107, 55 (1984). 10.1080/00268948408072072 CASWeb of Science®Google Scholar L. J. Azevedo, E. L. Venturini, J. E. Schirber, J. M. Williams, H. H.Wang, and T. J. Emge, Mol. Cryst. Liq. Cryst., 119, 389 (1985). 10.1080/00268948508075188 CASWeb of Science®Google Scholar L. J. Azevedo, E. L. Venturini, J. F. Kwak, J. E. Schirber, J. M. Williams, H. H. Wang, and P. E. Reed, Mol. Cryst. Liq. Cryst., 125, 169 (1985). 10.1080/00268948508080097 CASWeb of Science®Google Scholar J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev., 108, 1175 (1957). 10.1103/PhysRev.108.1175 CASWeb of Science®Google Scholar J. Bastide, P. Germain, J. Thourey, and G. Perachon, Mat. Res. Bull., 19, 7 (1984). 10.1016/0025-5408(84)90003-5 CASWeb of Science®Google Scholar K. Bechgaard, Mol. Cryst. Liq. Cryst., 125, 81 (1985). 10.1080/00268948508080089 CASWeb of Science®Google Scholar K. Bechgaard, C. S. Jacobsen, K. Mortensen, H. J. Pedersen, and N. Thorup, Solid State Commun., 33, 1119 (1980). 10.1016/0038-1098(80)91088-1 CASWeb of Science®Google Scholar K. Bechgaard, Mol. Cryst. Liq. Cryst., 79, 1 (1982). 10.1080/00268948208070982 CASWeb of Science®Google Scholar K. Bender, K. Dietz, H. Endres, H. W. Helberg, I. Hennig, H. J. Keller, H. W. Schäfer, and D. Schweitzer, Mol. Cryst. Liq. Cryst., 107, 45 (1984). 10.1080/00268948408072071 CASWeb of Science®Google Scholar K. Bender, I. Hennig, D. Schweitzer, K. Dietz, H. Endres, and H. J. Keller, Mol. Cryst. Liq. Cryst., 108, 359 (1984). 10.1080/00268948408078687 CASWeb of Science®Google Scholar G. Beni, P. Pincus, and J. Kanamori, Phys. Rev. B Solid State, 10, 1896 (1974). 10.1103/PhysRevB.10.1896 Web of Science®Google Scholar M. A. Beno, M. A. Firestone, P. C. W. Leung, L. M. Sowa, H. H. Wang, J. M. Williams, and M.-H. Whangbo, Solid State Commun., 57, 735 (1986). 10.1016/0038-1098(86)90849-5 CASWeb of Science®Google Scholar M. A. Beno, G. S. Blackman, P. C. W. Leung, K. D. Carlson, P. T. Copps, and J. M. Williams, Mol. Cryst. Liq. Cryst., 119, 409 (1985). 10.1080/00268948508075192 CASWeb of Science®Google Scholar M. A. Beno, D. D. Cox, J. M. Williams, and J. F. Kwak, Acta Crystallogr., C40, 1334 (1984). Google Scholar M. A. Beno, T. J. Emge, M. A. Firestone, L. M. Sowa, H. H. Wang, J. M. Williams, and M.-H. Whangbo (to be submitted for publication). Google Scholar M. A. Beno, H. H. Wang, B. A. Anderson, M.-H. Whangbo, and J. M. Williams (to be submitted for publication). Google Scholar M. A. Beno, U. Geiser, K. L. Kostka, H. H. Wang, K. S. Webb, M. A. Firestone, K. D. Carlson, L. Nuñez, J. M. Williams, and M.-H. Whangbo, Inorg. Chem., 26, (1987) (in press). Google Scholar M. A. Beno, H. H. Wang, K. S. Webb, and J. M. Williams (to be submitted for publication). Google Scholar M. A. Beno, G. S. Blackman, P. C. W. Leung, and J. M. Williams, Solid State Commun., 48, 99 (1983). 10.1016/0038-1098(83)90935-3 CASWeb of Science®Google Scholar C. Bianchini and A. Meli, J. Chem. Soc. Chem. Commun., 1309 (1983). Google Scholar A. N. Bloch, D. O. Cowan, K. Bechgaard, R. E. Pyle, R. H. Banks, and T. O. Poehler, Phys. Rev. Lett., 34, 1561 (1975). 10.1103/PhysRevLett.34.1561 CASWeb of Science®Google Scholar A. Bondi, J. Phys. Chem., 68, 441 (1964). 10.1021/j100785a001 CASWeb of Science®Google Scholar M. Bousseau, L. Valade, J.-P. Legros, P. Cassoux, M. Garbauskas, and L. V. Interrante, J. Am. Chem. Soc., 108, 1908 (1986). 10.1021/ja00268a032 CASWeb of Science®Google Scholar M. Bousseau, L. Valade, M.-F. Bruniquel, P. Cassoux, M. Garbauskas, L. Interrante, and J. Kasper, Nouv. J. Chim., 8, 3 (1984). CASWeb of Science®Google Scholar J. M. Braam, C. D. Carlson, D. A. Stephens . A. E. Rehan, S. J. Compton, R. A. Barkhau, H. H. Wang, and J. M. Williams, Inorg. Synth., 24, 130 (1986). Google Scholar R. D. Braun and D. C. Green, J. Electroanal. Chem., 79, 381 (1977). 10.1016/S0022-0728(77)80460-9 CASWeb of Science®Google Scholar P. Braunstein and R. J. H. Clark, J. Chem. Soc. Dalton Trans., 1845 (1973). Google Scholar L. Brossard, M. Ribault, M. Bousseau, L. Valade, and P. Cassoux, C. R. Seances Acad. Sci., Ser. II, 302, 205 (1986). CASWeb of Science®Google Scholar C. A. Brown, R. D. Miller, C. M. Lindsay, and K. Smith, Tetrahedron Lett., 25, 991 (1984). 10.1016/S0040-4039(01)80082-4 CASWeb of Science®Google Scholar M. R. Bryce, J. Chem. Soc. Perkin Trans., 1, 1675 (1985). 10.1039/p19850001675 Web of Science®Google Scholar M. R. Bryce, Mol. Cryst. Liq. Cryst., 120, 305 (1985). 10.1080/00268948508075807 CASWeb of Science®Google Scholar M. R. Bryce, Tetrahedron Lett., 25, 2403 (1984). 10.1016/S0040-4039(01)80266-5 CASWeb of Science®Google Scholar K. D. Carlson, G. W. Crabtree, L. N. Hall, P. T. Copps, H. H. Wang, T. J. Emge, M. A. Beno, and J. M. Williams, Mol. Cryst. Liq. Cryst., 119, 357 (1985). 10.1080/00268948508075185 CASWeb of Science®Google Scholar K. D. Carlson, G. W. Crabtree, M. Choi, L. N. Hall, P. T. Copps, H. H. Wang, T. J. Emge, M. A. Beno, and J. M. Williams, Mol. Cryst. Liq. Cryst., 125, 145 (1985). 10.1080/00268948508080095 CASWeb of Science®Google Scholar K. D. Carlson, G. W. Crabtree, L. Nuñez, H. H. Wang, M. A. Beno, U. Geiser, M. A. Firestone, K. S. Webb, and J. M. Williams, Solid State Commun., 57, 89 (1986). 10.1016/0038-1098(86)90519-3 CASWeb of Science®Google Scholar K. D. Carlson, G. W. Crabtree, L. N. Hall, F. Behroozi, P. T. Copps, L. M. Sowa, L. Nuñez, M. A. Firestone, H. H. Wang, M. A. Beno, T. J. Emge, and J. M. Williams, Mol. Cryst. Liq. Cryst., 125, 159 (1985). 10.1080/00268948508080096 CASWeb of Science®Google Scholar K. D. Carlson, J. M. Williams, and P. Cassoux (unpublished results, 1986). Google Scholar K. Carneiro, J. C. Scott, and E. M. Engler, Solid State Commun., 50, 477 (1984). 10.1016/0038-1098(84)90311-9 CASWeb of Science®Google Scholar P. Cassoux, L. Valade, M. Bousseau, J.-P. Legros, M. Garbauskas, and L. Interrante, Mol. Cryst. Liq. Cryst., 120, 377 (1985). 10.1080/00268948508075823 CASWeb of Science®Google Scholar D. Chasseau, J. Gaultier, and C. Hauw, C. R. Seances Acad. Sci. Ser. C, 274, 1434 (1972). Web of Science®Google Scholar E. Clementi and C. Roetti, At. Data Nucl. Data Tables, 14, 177 (1974). 10.1016/S0092-640X(74)80016-1 CASGoogle Scholar A. M. Clogston, Phys. Rev. Lett., 9, 266 (1962). 10.1103/PhysRevLett.9.266 Web of Science®Google Scholar L. B. Coleman, M. J. Cohen, D. J. Sandman, F. G. Yamagishi, A. F. Garito, and A. J. Heeger, Solid State Commun., 12, 1125 (1973). 10.1016/0038-1098(73)90127-0 CASWeb of Science®Google Scholar J. R. Cooper, M. Weger, D. Jerome, D. Lefur, K. Bechgaard, A. N. Bloch, and D. O. Cowan, Solid State Commun., 19, 749 (1976). 10.1016/0038-1098(76)90911-X CASWeb of Science®Google Scholar G. W. Crabtree, K. D. Carlson, L. N. Hall, P. T. Copps, H. H. Wang, T. J. Emge, M. A. Beno, and J. M. Williams, Phys. Rev. B Condens. Matter, 30, 2958 (1984). 10.1103/PhysRevB.30.2958 CASWeb of Science®Google Scholar F. Creuzet, G. Creuzet, D. Jerome, D. Schweitzer, and H. J. Keller, J. Phys. Lett. (Les Ulis, Fr.), 46, L-1079 (1985). 10.1051/jphys:019850046070107900 Web of Science®Google Scholar L. J. DeJongh and A. R. Miedema, Adv. Phys., 23, 1 (1974). 10.1080/00018739700101558 CASWeb of Science®Google Scholar J. T. Devreese, R. P. Evrard, and V. E. van Doren, Eds., Highly Conducting One-Dimensional Solids, Plenum Press, New York, 1979. 10.1007/978-1-4613-2895-7 Google Scholar V. J. Emery, Phys. Rev. Lett., 37, 107 (1976). 10.1103/PhysRevLett.37.107 CASWeb of Science®Google Scholar T. J. Emge, P. C. W. Leung, M. A. Beno, H. H. Wang, J. M. Williams, M.-H. Whangbo, and M. Evain, Mol. Cryst. Liq. Cryst., 138, 393 (1986). 10.1080/00268948608071772 CASWeb of Science®Google Scholar T. J. Emge, H. H. Wang, M. A. Beno, P. C. W. Leung, M. A. Firestone, H. C. Jenkins, J. D. Cook, K. D. Carlson, J. M. Williams, E. L. Venturini L. J. Azevedo, and J. E. Schirber, Inorg. Chem., 24, 1736 (1985). 10.1021/ic00206a004 CASWeb of Science®Google Scholar T. J. Emge, P. C. W. Leung, M. A. Beno, H. H. Wang, M. A. Firestone, K. S. Webb, K. D. Carlson, J. M. Williams, E. L. Venturini, L. J. Azevedo, and J. E. Schirber, Mol. Cryst. Liq. Cryst., 132, 363 (1986). 10.1080/00268948608079554 CASWeb of Science®Google Scholar T. J. Emge, P. C. W. Leung, M. A. Beno, A. J. Schultz, H. H. Wang, L. M. Sowa, and J. M. Williams, Phys. Rev. B Condens. Matter, 30, 6780 (1984). 10.1103/PhysRevB.30.6780 CASWeb of Science®Google Scholar T. J. Emge, W. A. Bryden, F. M. Wiygul, D. O. Cowan, T. J. Kistenmacher, and A. N. Bloch, J. Chem. Phys., 77, 3188 (1982). 10.1063/1.444193 CASWeb of Science®Google Scholar T. J. Emge, H. H. Wang, P. C. W. Leung, P. R. Rust, J. D. Cook, P. L. Jackson, K. D. Carlson, J. M. Williams, M.-H. Whangbo, E. L. Venturini, J. E. Schirber, L. J. Azevedo, and J. R. Ferraro, J. Am. Chem. Soc., 108, 695 (1986). 10.1021/ja00264a020 CASWeb of Science®Google Scholar T. J. Emge, H. H. Wang, U. Geiser, M. A. Beno, K. S. Webb, and J. M. Williams, J. Am. Chem. Soc., 108, 3849 (1986). 10.1021/ja00273a061 CASWeb of Science®Google Scholar J. H. Enemark and J. A. Ibers, Inorg. Chem., 7, 2636 (1968). 10.1021/ic50070a035 CASWeb of Science®Google Scholar E. M. Engler, V. Y. Lee, R. R. Schumaker, S. S. P. Parkin, R. L. Greene, and J. C. Scott, Mol. Cryst. Liq. Cryst., 107, 19 (1984). 10.1080/00268948408072069 CASWeb of Science®Google Scholar E. M. Engler, CHEMTECH, 6, 274 (1976). CASWeb of Science®Google Scholar E. M. Engler and V. V. Patel, J. Am. Chem. Soc., 96, 7376 (1974). 10.1021/ja00830a047 CASWeb of Science®Google Scholar V. Enkelmann, B. S. Morra, C. Kröhnke, G. Wegner, and J. Heinze, Chem. Phys., 66, 303 (1982). 10.1016/0301-0104(82)88029-4 CASWeb of Science®Google Scholar J. M. Fabre, L. Giral, E. Dupart, C. Coulon, and P. Delhaes, J. Chem. Soc. Chem. Commun., 426 (1983). Google Scholar J. M. Fabre, L. Giral, E. Dupart, C. Coulon, J. P. Manceau, and P. Delhaes, J. Chem. Soc. Chem. Commun., 1477 (1983). Google Scholar E. Fanghänel, A. M. Richter, and G. Schukat, J. Prakt. Chem., 326, 479 (1984). 10.1002/prac.19843260316 Web of Science®Google Scholar G. Feher and A. F. Kip, Phys. Rev., 98, 337 (1955). 10.1103/PhysRev.98.337 CASWeb of Science®Google Scholar J. Ferguson, Prog. Inorg. Chem., 12, 159 (1970). 10.1002/9780470166130.ch3 CASGoogle Scholar J. Ferraris, D. O. Cowan, V. Walatka, Jr., and J. H. Perlstein, J. Am. Chem. Soc., 95, 948 (1973). 10.1021/ja00784a066 CASWeb of Science®Google Scholar B. Gallois, J. Gaultier, C. Hauw, D. Chasseau, A. Meresse, A. Filhol, and K. Bechgaard, Mol. Cryst. Liq. Cryst., 119, 225 (1985). 10.1080/00268948508075161 Web of Science®Google Scholar U. Geiser, H. H. Wang, M. A. Beno, M. A. Firestone, K. S. Webb, J. M. Williams, and M.-H. Whangbo, Solid State Commun., 57, 741 (1986). 10.1016/0038-1098(86)90850-1 CASWeb of Science®Google Scholar U. Geiser, H. H. Wang, L. E. Gerdom, M. A. Firestone, L. M. Sowa, J. M. Williams, and M.-H. Whangbo, J. Am. Chem. Soc., 107, 8305 (1985). 10.1021/ja00312a106 CASWeb of Science®Google Scholar U. Geiser, H. H. Wang, P. R. Reed, L. M. Sowa, and J. M. Williams (unpublished results, 1985). Google Scholar U. Geiser, H. H. Wang, K. M. Donega, B. A. Anderson, J. M. Williams, and J. F. Kwak, Inorg. Chem., 25, 401 (1986). 10.1021/ic00224a001 CASWeb of Science®Google Scholar U. Geiser, M. A. Beno, H. H. Wang, E. Hudson, M. A. Firestone, B. A. Anderson, and J. M. Williams (unpublished results, 1985). Google Scholar U. Geiser, M. A. Beno, H. H. Wang, L. E. Gerdom, M. A. Firestone, K. S. Webb, and J. M. Williams (unpublished results, 1985). Google Scholar M. A. Beno, U. Geiser, K. L. Kostka, H. H. Wang, K. S. Webb, M. A. Firestone, K. D. Carlson, L. Nuñez, J. M. Williams, and M. H. Whangbo, Inorg. Chem., 26, (1987) (in press). Google Scholar S. Geller, Acc. Chem. Res., 11, 87 (1978). 10.1021/ar50123a002 CASWeb of Science®Google Scholar V. B. Ginodman, A. V. Gudenko, and L. N. Zherikhina, J.E.T.P. Lett., 41, 49 (1985). Web of Science®Google Scholar J. Gislason, M. H. Lloyd, and D. G. Tuck, Inorg. Chem., 10, 1907 (1971). 10.1021/ic50103a014 Web of Science®Google Scholar N. C. Gonnella and M. P. Cava, J. Org. Chem., 43, 369 (1978). 10.1021/jo00396a052 CASWeb of Science®Google Scholar A. D. C. Grassie, The Superconducting State, Sussex University Press, London, 1975, Ch. 2. Google Scholar R. L. Greene and P. M. Chaikin, Physica, 126B, 431 (1984). Google Scholar R. L. Greene, P. M. Grant, and G. B. Street, Phys. Rev. Lett., 34, 89 (1975). 10.1103/PhysRevLett.34.89 CASWeb of Science®Google Scholar R. L. Greene, G. B. Street, and L. J. Suter, Phys. Rev. Lett., 34, 577 (1975). 10.1103/PhysRevLett.34.577 CASWeb of Science®Google Scholar J. J. Habeeb and D. G. Tuck, J. Chem. Soc. Chem. Commun., 600 (1975). Google Scholar J. J. Habeeb and D. G. Tuck, J. Chem. Soc. Dalton Trans., 866 (1976). Google Scholar W. E. Hatfield, Ed., Molecular Metals, Plenum Press, New York, 1979. 10.1007/978-1-4684-3480-4 Google Scholar C.-P. Heidmann, H. Veith, K. Andres, H. Fuchs, K. Polborn, and E. Amberger, Solid State Commun., 57, 161 (1986). 10.1016/0038-1098(86)90130-4 CASWeb of Science®Google Scholar J. Hellberg, G. Ahlgren, S. Söderholm, G. Olovsson, and J. U. von Schutz, Mol. Cryst. Liq. Cryst., 120, 273 (1985). 10.1080/00268948508075801 CASWeb of Science®Google Scholar T. Hibma, G. A. Sawatzky, and J. Kommandeur, Phys. Rev. B Solid State, 15, 3959 (1977). 10.1103/PhysRevB.15.3959 CASWeb of Science®Google Scholar R. Hoffmann, J. Chem. Phys., 39, 1397 (1963). 10.1063/1.1734456 CASWeb of Science®Google Scholar J. Hubbard, Proc. R. Soc. London, Ser. A., 276, 238 (1963). 10.1098/rspa.1963.0204 Web of Science®Google Scholar I. Ikemoto, M. Yamada, T. Sugano, and H. Kuroda, Bull. Chem. Soc. Jpn., 53, 1871 (1980). 10.1246/bcsj.53.1871 CASWeb of Science®Google Scholar C. S. Jacobsen, J. M. Williams, and H. H. Wang, Solid State Commun., 54, 937 (1985). 10.1016/0038-1098(85)90160-7 CASWeb of Science®Google Scholar C. S. Jacobsen, K. Mortensen, J. R. Andersen, and K. Bechgaard, Phys. Rev. B Solid State, 18, 905 (1978). 10.1103/PhysRevB.18.905 CASWeb of Science®Google Scholar D. Jerome and H. J. Schultz, Adv. Phys., 31, 299 (1982). 10.1080/00018738200101398 CASWeb of Science®Google Scholar D. Jerome, A. Mazaud, M. Ribault, and K. Bechgaard, J. Phys. Lett. (Les Ulis, Fr.) 41, L195 (1980). 10.1051/jphyslet:0198000410409500 CASWeb of Science®Google Scholar S. Kagoshima, J. P. Pouget, G. Saito, and H. Inokuchi, Solid State Commun., 45, 1001 (1983). 10.1016/0038-1098(83)91034-7 CASWeb of Science®Google Scholar V. F. Kaminskii, T. G. Prokhorova, R. P. Shibaeva, and E. B. Yagubskii, J.E.T.P. Lett., 39, 15 (1984). Google Scholar V. F. Kaminskii, T. G. Prokhorova, R. P. Shibaeva, and E. B. Yagubskii, J.E.T.P. Lett., 39, 17 (1984). Web of Science®Google Scholar M. G. Kaplunov, E. B. Yagubskii, L. P. Rosenberg, and Yu. G. Borodko, Phys. Status Solidi A, 89, 509 (1985). 10.1002/pssa.2210890211 CASWeb of Science®Google Scholar R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, and H. Kobayashi, Chem. Lett., 1 (1984). Google Scholar R. Kato, A. Kobayashi, Y. Sasaki, and H. Kobayashi, Chem. Lett., 993 (1984). Google Scholar S. M. Kauzlarich, B. A. Averill, and B. K. Teo, Mol. Cryst. Liq. Cryst., 107, 65 (1984). 10.1080/00268948408072073 CASWeb of Science®Google Scholar H. J. Keller, Ed., Low-Dimensional Cooperative Phenomena, Plenum Press, New York, 1974. Google Scholar H. J. Keller, Ed., Chemistry and Physics of One-Dimensional Metals, Vol. 25 of NATO Advanced Study Institute Series, B-Physics, Plenum Press, New York, 1977. 10.1007/978-1-4615-8915-0 Google Scholar R. Ketcham, A. Hörnfeldt, and S. Gronowitz, J. Org. Chem., 49, 1117 (1984). 10.1021/jo00180a031 CASWeb of Science®Google Scholar H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki, and H. Inokuchi, J. Am. Chem. Soc., 105, 297 (1983). 10.1021/ja00340a028 CASWeb of Science®Google Scholar H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki, and H. Inokuchi, Chem. Lett., 179 (1984). Google Scholar H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, and H. Inokuchi, Chem. Lett., 759 (1983). Google Scholar H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito, and H. Inokuchi, Chem. Lett., 183 (1984). Google Scholar H. Kobayashi, R. Kato, T. Mori, A. Kobayashi, Y. Sasaki, G. Saito, T. Enoki, and H. Inokuchi, Mol. Cryst. Liq. Cryst., 107, 33 (1984). 10.1080/00268948408072070 CASWeb of Science®Google Scholar H. Kobayashi, R. Kato, A. Kobayashi, G. Saito, M. Tokumoto, H. Anzai, and T. Ishiguro, Chem. Lett., 1293 (1985). Google Scholar H. Kobayashi, T. Mori, R. Kato, A. Kobayashi, Y. Sasaki, G. Saito, and H. Inokuchi, Chem. Lett., 581 (1983). Google Scholar H. Kobayashi, R. Kato, A. Kobayashi, and Y. Sasaki, Chem. Lett., 191 (1985). Google Scholar H. Kobayashi, A. Kobayashi, Y. Sasaki, G. Saito, and H. Inokuchi, Bull. Chem. Soc. Jpn., 59, 301 (1986). 10.1246/bcsj.59.301 CASWeb of Science®Google Scholar B. Koch, H. P. Geserich, W. Ruppel, D. Schweitzer, K. H. Dietz, and H. J. Keller, Mol. Cryst. Liq. Cryst., 119, 343 (1985). 10.1080/00268948508075183 CASWeb of Science®Google Scholar J. Korringa, Physica, 16, 601 (1950). 10.1016/0031-8914(50)90105-4 CASWeb of Science®Google Scholar H. Kuroda, K. Yakushi, H. Tajima, and G. Saito, Mol. Cryst. Liq. Cryst., 125, 135 (1985). 10.1080/00268948508080094 CASWeb of Science®Google Scholar J. F. Kwak, L. J. Azevedo, J. E. Schirber, J. M. Williams, and M. A. Beno, Mol. Cryst. Liq. Cryst., 125, 365 (1985). 10.1080/00268948508080116 CASWeb of Science®Google Scholar J. F. Kwak, J. E. Schirber, E. M. Engler, and R. L. Greene, Phys. Rev. Lett., 46, 1296 (1981). 10.1103/PhysRevLett.46.1296 CASWeb of Science®Google Scholar V. N. Laukhin, E. E. Kostyuchenko, Yu. V. Sushko, I. F. Shchegolev, and E. B. Yagubskii, J.E.T.P. Lett., 41, 81 (1985). Web of Science®Google Scholar V. N. Laukhin, E. E. Kostyuchenko, Yu. V. Sushko, I. F. Shchegolev, and E. B. Yagubskii, Zh. Eksp. Teor. Fiz. Pis'ma Red., 41, 68 (1985). Google Scholar R. Laversanne, J. Amiell, P. Delhaes, D. Chasseau, and C. Hauw, Solid State Commun., 52, 177 (1984). 10.1016/0038-1098(84)90622-7 CASWeb of Science®Google Scholar R. Laversanne, J. Amiell, P. Delhaes, D. Chasseau, and C. Hauw, Mol. Cryst. Liq. Cryst., 119, 405 (1985). 10.1080/00268948508075191 CASWeb of Science®Google Scholar H. Le Bozec and P. H. Dixneuf, J. Chem. Soc. Chem. Commun., 1462 (1983). Google Scholar G. Le Coustumer and Y. Mollier, J. Chem. Soc. Chem. Commun., 38 (1980). Google Scholar K. Lerstrup, D. O. Cowan, and T. J. Kistenmacher, J. Am. Chem. Soc., 106, 8303 (1984). 10.1021/ja00338a055 CASWeb of Science®Google Scholar K. Lerstrup, M. Lee, D. Cowan, and T. Kistenmacher, Mol. Cryst. Liq. Cryst., 120, 295 (1985). 10.1080/00268948508075805 CASWeb of Science®Google Scholar P. C. W. Leung, M. A. Beno, G. S. Blackman, B. R. Coughlin, C. A. Miderski, W. Joss, G. W. Crabtree, and J. M. Williams, Acta Crystallogr., C40, 1331 (1984). CASGoogle Scholar P. C. W. Leung, T. J. Emge, M. A. Beno, H. H. Wang, J. M. Williams, V. Petricek, and P. Coppens, J. Am. Chem. Soc., 107, 6184 (1985). 10.1021/ja00308a007 CASWeb of Science®Google Scholar P. C. W. Leung, M. A. Beno, T. J. Emge, H. H. Wang, M. K. Bowman, M. A. Firestone, L. M. Sowa, and J. M. Williams, Mol. Cryst. Liq. Cryst., 125, 113 (1985). 10.1080/00268948508080092 CASWeb of Science®Google Scholar P. C. W. Leung, T. J. Emge, M. A. Beno, H. H. Wang, J. M. Williams, V. Petricek, and P. Coppens, J. Am. Chem. Soc., 106, 7644 (1984). 10.1021/ja00336a068 CASWeb of Science®Google Scholar P. C. W. Leung, T. J. Emge, A. J. Schultz, M. A. Beno, K. D. Carlson, H. H. Wang, M. A. Firestone, and J. M. Williams, Solid State Commun., 57, 93 (1986). 10.1016/0038-1098(86)90520-X CASWeb of Science®Google Scholar O. Lindqvist, L. Sjölin, J. Sieler, G. Steimecke, and E. Hoyer, Acta Chem. Scand. A, 33, 445 (1979). 10.3891/acta.chem.scand.33a-0445 CASWeb of Science®Google Scholar O. Lindqvist, L. Andersen, J. Sieler, G. Steimecke, and E. Hoyer, Acta Chem. Scand. A, 36, 855 (1982). 10.3891/acta.chem.scand.36a-0855 CASWeb of Science®Google Scholar C. M. Lindsay, K. Smith, C. A. Brown, and K. Betterton-Cruz, Tetrahedron Lett., 25, 995 (1984). 10.1016/S0040-4039(01)80083-6 CASWeb of Science®Google Scholar W. A. Little, Phys. Rev. 134, A1416 (1964). 10.1103/PhysRev.134.A1416 CASWeb of Science®Google Scholar G. Mahr and F. Vögtle, J. Chem. Res. (S), 312 (1984). Google Scholar H. N. McCoy and W. C. Moore, J. Am. Chem. Soc., 33, 273 (1911). 10.1021/ja02216a003 CASWeb of Science®Google Scholar V. A. Merzhanov, E. E. Kostyuchenko, V. N. Laukhin, R. M. Lobkovskaya, M. K. Makova, R. P. Shibaeva, I. F. Shchegolev, and E. B. Yagubskii, J.E.T.P. Lett., 41, 179 (1985). Web of Science®Google Scholar V. A. Merzhanov, E. E. Kostyuchenko, O. E. Faber, I. F. Shchegolev, and E. B. Yagubskii, Zh. Eksp. Teor. Fiz., 89, 292 (1985). Web of Science®Google Scholar J. S. Miller and A. J. Epstein, Prog. Inorg. Chem., 20, 1 (1976). 10.1002/9780470166215.ch1 CASGoogle Scholar M. Mizuno, A. F. Garito and M. P. Cava, J. Chem. Soc. Chem. Commun., 18 (1978). Google Scholar R. Moret, J. P. Pouget, R. Comes, and K. Bechgaard, Phys. Rev. Lett., 49, 1008 (1982). 10.1103/PhysRevLett.49.1008 CASWeb of Science®Google Scholar T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, and H. Inokuchi, Chem. Lett., 957 (1984). Google Scholar T. Mori, A. Kobayashi, Y. Sasaki, H. Kobayashi, G. Saito, and H. Inokuchi, Bull. Chem. Soc. Jpn., 57, 627 (1984). 10.1246/bcsj.57.627 CASPubMedWeb of Science®Google Scholar T. Mori, A. Kobayashi, Y. Sasaki, R. Kato, and H. Kobayashi, Solid State Commun., 53, 627 (1985). 10.1016/0038-1098(85)90364-3 CASWeb of Science®Google Scholar K. Mortensen, Y. Tomkiewicz, T. D. Schultz, and E. M. Engler, Phys. Rev. Lett., 46, 1234 (1981). 10.1103/PhysRevLett.46.1234 CASWeb of Science®Google Scholar K. Mortensen, J. M. Williams, and H. H. Wang, Solid State Commun., 56, 105 (1985). 10.1016/0038-1098(85)90544-7 CASWeb of Science®Google Scholar K. Mortensen, C. S. Jacobsen, K. Bechgaard, K. Carneiro, and J. M. Williams, Mol. Cryst. Liq. Cryst., 119, 401 (1985). 10.1080/00268948508075190 CASWeb of Science®Google Scholar N. F. Mott, Metal-Insulator Transitions, Barnes & Noble, New York, 1977. Google Scholar K. Murata, M. Tokumoto, H. Anzai, H. Bando, G. Saito, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn., 54, 2084 (1985). 10.1143/JPSJ.54.2084 CASWeb of Science®Google Scholar K. Murata, M. Tokumoto, H. Anzai, H. Bando, G. Saito, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn., 54, 1236 (1985). 10.1143/JPSJ.54.1236 CASWeb of Science®Google Scholar K. Murata, M. Tokumoto, H. Bando, H. Tanino, H. A. N. Kinoshita, K. Kajimura, G. Saito, and T. Ishiguro, Physica, 135B, 515 (1985). Google Scholar K. Murata, M. Tokumoto, H. Anzai, H. Bando, K. Kajimura, T. Ishiguro, and G. Saito, Synth. Met., 13, 3 (1986). 10.1016/0379-6779(86)90052-4 CASWeb of Science®Google Scholar M. Narita and C. U. Pittman, Jr., Synthesis, 489 (1976). Google Scholar H. Kammerlingh Onnes, Akad. van Weterschappen, 14, 113, 818 (1911). Google Scholar S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. C. Scott, and R. L. Greene, Phys. Rev. Lett., 50, 270 (1983). 10.1103/PhysRevLett.50.270 CASWeb of Science®Google Scholar S. S. P. Parkin, E. M. Engler, V. Y. Lee, and R. R. Schumaker, Mol. Cryst. Liq. Cryst., 119, 375 (1985). 10.1080/00268948508075187 CASWeb of Science®Google Scholar S. S. P. Parkin, E. M. Engler, R. R. Schumaker, R. Lagier, V. Y. Lee, J. Voiron, K. Carneiro, J. C. Scott, and R. L. Greene, J. Phys. (Les Ulis, Fr.), 44, C3–791 (1983). Google Scholar L. Pauling, The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1960. Google Scholar H. J. Pedersen, J. C. Scott, and K. Bechgaard, Phys. Rev. B Condens. Matter, 24, 5014 (1981). 10.1103/PhysRevB.24.5014 CASWeb of Science®Google Scholar R. E. Peierls, Quantum Chemistry of Solids, Clarendon Press, New York, 1974. Google Scholar H. Poleschner, W. John, G. Kempe, E. Hoyer, and E. Fanghänel, Z. Chem., 18, 345 (1978). 10.1002/zfch.19780180917 CASWeb of Science®Google Scholar A. I. Popov and R. E. Buckles, Inorg. Synth., 5, 167 (1957). 10.1002/9780470132364.ch46 CASWeb of Science®Google Scholar J. P. Pouget, R. Moret, R. Comes, K. Bechgaard, J. M. Fabre, and L. Giral, Mol. Cryst. Liq. Cryst., 79, 129 (1982). 10.1080/00268948208070995 CASWeb of Science®Google Scholar J. P. Pouget, R. Moret, R. Comes, and K. Bechgaard, J. Phys. Lett. (Les Ulis, Fr.), 42, L543 (1981). 10.1051/jphyslet:019810042024054300 Web of Science®Google Scholar J. P. Pouget, G. Shirane, K. Bechgaard, and M. Fabre, Phys. Rev. B Condens. Matter, 37, 5203 (1983). 10.1103/PhysRevB.27.5203 Web of Science®Google Scholar P. E. Reed, J. M. Braam, L. M. Sowa, R. A. Barkhau, G. S. Blackman, D. D. Cox, G. A. Ball, H. H. Wang, and J. M. Williams, Inorg. Synth., 25 (in press). Google Scholar M. J. Rice, V. M. Yartsev, and C. S. Jacobsen, Phys. Rev. B Condens. Matter, 21, 3437 (1980). 10.1103/PhysRevB.21.3437 CASWeb of Science®Google Scholar M. J. Rice, Phys. Rev. Lett., 37, 36 (1976). 10.1103/PhysRevLett.37.36 CASWeb of Science®Google Scholar M. J. Rice, L. Pietronero, and P. Brüesch, Solid State Commun., 21, 757 (1977). 10.1016/0038-1098(77)91146-2 CASWeb of Science®Google Scholar F. D. Saeva, B. P. Morgan, M. W. Fichtner, and N. F. Haley, J. Org. Chem., 49, 390 (1984). 10.1021/jo00176a037 CASWeb of Science®Google Scholar G. Saito, T. Enoki, K. Toriumi, and H. Inokuchi, Solid State Commun., 42, 557 (1982). 10.1016/0038-1098(82)90607-X CASWeb of Science®Google Scholar G. Saito, T. Enoki, H. Inokuchi, and H. Kobayashi, J. Phys. (Les Ulis, Fr.), 44, C3–1215 (1983). Google Scholar J. E. Schirber, L. J. Azevedo, J. F. Kwak, E. L. Venturini, P. C. W. Leung, M. A. Beno, H. H. Wang, and J. M. Williams, Phys. Rev. B Condens. Matter, 33, 1987 (1986). 10.1103/PhysRevB.33.1987 CASPubMedWeb of Science®Google Scholar A. J. Schultz, H. H. Wang, and J. M. Williams (to be published). Google Scholar A. J. Schultz, H. H. Wang, M. A. Beno, J. M. Williams, K. Bechgaard, and M.-H. Whangbo (in preparation). Google Scholar R. R. Schumaker and E. M. Engler, J. Am. Chem. Soc., 99, 5521 (1977). 10.1021/ja00458a068 CASWeb of Science®Google Scholar R. R. Schumaker, V. Y. Lee, and E. M. Engler, J. Phys. (Les Ulis, Fr.), 44, C3–1139 (1983). Google Scholar R. R. Schumaker, V. Y. Lee, and E. M. Engler, J. Org. Chem., 49, 564 (1984). 10.1021/jo00177a041 CASWeb of Science®Google Scholar H. Schwenk, C.-P. Heidmann, F. Gross, E. Hess, K. Andres, D. Schweitzer, and H. J. Keller, Phys. Rev. B Condens. Matter, 31, 3138 (1985). 10.1103/PhysRevB.31.3138 CASPubMedWeb of Science®Google Scholar H. Schwenk, K. Andres, F. Wudl, and E. Aharon-Shalom, Solid State Commun., 45, 767 (1983). 10.1016/0038-1098(83)90251-X CASWeb of Science®Google Scholar H. Schwenk, F. Gross, C.-P. Heidmann, K. Andres, D. Schweitzer, and H. Keller, Mol. Cryst. Liq. Cryst., 119, 329 (1985). 10.1080/00268948508075181 CASWeb of Science®Google Scholar H. Schwenk, S. S. P. Parkin, V. Y. Lee, and R. L. Greene, Phys. Rev. B Condens. Matter, 34, 3156 (1986). 10.1103/PhysRevB.34.3156 CASPubMedWeb of Science®Google Scholar S. S. Shaik and M.-H. Whangbo, Inorg. Chem., 25, 1201 (1986). 10.1021/ic00228a027 CASWeb of Science®Google Scholar I. F. Shchegolev, E. B. Yagubskii, and V. N. Laukhin, Mol. Cryst. Liq. Cryst., 126, 365 (1985). 10.1080/00268948508084799 Web of Science®Google Scholar R. P. Shibaeva, V. F. Kaminskii, and E. B. Yagubskii, Mol. Cryst. Liq. Cryst., 119, 361 (1985). 10.1080/00268948508075186 CASWeb of Science®Google Scholar P. Shu, L. Chiang, T. Emge, D. Holt, T. Kistenmacher, M. Lee, J. Stokes, T. Poehler, A. Bloch, and D. Cowan, J. Chem. Soc. Chem. Commun., 920 (1981). Google Scholar G. Steimecke, H. Sieler, R. Kirmse, and E. Hoyer, Phos. and Sulf., 7, 49 (1979). 10.1080/03086647808069922 CASWeb of Science®Google Scholar G. R. Stewart, J. M. Williams, H. H. Wang, L. N. Hall, M. T. Perozzo, and K. D. Carlson, Phys. Rev. B Condens. Matter, 34, 6509 (1986). 10.1103/PhysRevB.34.6509 CASPubMedWeb of Science®Google Scholar G. R. Stewart, J. O'Rourke, G. W. Crabtree, K. D. Carlson, H. H. Wang, J. M. Williams, F. Gross, and K. Andres, Phys. Rev. B Condens. Matter, 33, 2046 (1986). 10.1103/PhysRevB.33.2046 CASPubMedWeb of Science®Google Scholar T. Sugano, K. Yamada, G. Saito, and M. Kinoshita, Solid State Commun., 55, 137 (1985). 10.1016/0038-1098(85)90265-0 CASWeb of Science®Google Scholar T. Sugimoto, H. Awaji, Y. Misaki, Z. Yoshida, Y. Kai, H. Nakagawa, and N. Kasai, J. Am. Chem. Soc., 107, 5792 (1985). 10.1021/ja00306a030 CASWeb of Science®Google Scholar H. Tajima, K. Yakushi, H. Kuroda, and G. Saito, Solid State Commun., 56, 159 (1985). 10.1016/0038-1098(85)90731-8 CASWeb of Science®Google Scholar H. Tajima, K. Yakushi, H. Kuroda, G. Saito, and H. Inokuchi, Solid State Commun., 49, 769 (1984). 10.1016/0038-1098(84)90076-0 CASWeb of Science®Google Scholar T. Takahashi, D. D. Jerome, and K. Bechgaard, J. Phys. Lett. (Les Ulis, Fr.), 43, 565 (1982). Google Scholar H. Tatemitsu, E. Nishikawa, Y. Sakata, and S. Misumi, J. Chem. Soc. Chem. Commun., 106 (1985). Google Scholar A. Terahara, H. Ohya-Nishiguchi, N. Hirota, H. Awaji, T. Kawase, S. Yoneda, T. Sugimoto, and Z. Yoshida, Bull. Chem. Soc. Jpn., 57, 1760 (1984). 10.1246/bcsj.57.1760 CASWeb of Science®Google Scholar M. Tokumoto, K. Murata, H. Bando, H. Anzai, G. Saito, K. Kajimura, and T. Ishiguro, Solid State Commun., 54, 1031 (1985). 10.1016/0038-1098(85)90753-7 CASWeb of Science®Google Scholar M. Tokumoto, H. Bando, H. Anzai, G. Saito, K. Murata, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn., 54, 869 (1985). 10.1143/JPSJ.54.869 Web of Science®Google Scholar M. Tokumoto, H. Anzai, H. Bando, G. Saito, N. Kinoshita, K. Kajimura, and T. Ishiguro, J. Phys. Soc. Jpn., 54, 1669 (1985). 10.1143/JPSJ.54.1669 CASWeb of Science®Google Scholar Y. Tomkiewicz, J. R. Andersen, and A. R. Taranko, Phys. Rev. B Solid State, 17, 1579 (1978). 10.1103/PhysRevB.17.1579 Web of Science®Google Scholar G. A. Toombs, Phys. Rep., 40, 181 (1978). 10.1016/0370-1573(78)90149-7 Web of Science®Google Scholar J. B. Torrance and B. D. Silverman, Phys. Rev. B Solid State, 15, 788 (1977). 10.1103/PhysRevB.15.788 CASWeb of Science®Google Scholar L. Valade, M. Bousseau, A. Gleizes, and P. Cassoux, J. Chem. Soc. Chem. Commun., 110 (1983). Google Scholar C. T. Vance, R. D. Bereman, J. Bordner, W. E. Hatfield, and J. H. Helms, Inorg. Chem., 24, 2905 (1985). 10.1021/ic00213a007 CASWeb of Science®Google Scholar S. Van Smaalen and J. Kommandeur, Phys. Rev. B Condens. Matter, 31, 8056 (1985). 10.1103/PhysRevB.31.8056 CASPubMedWeb of Science®Google Scholar H. Veith, C.-P. Heidmann, F. Gross, A. Lerf, K. Andres, and D. Schweitzer, Solid State Commun., 56, 1015 (1985). 10.1016/0038-1098(85)90861-0 CASWeb of Science®Google Scholar E. L. Venturini, L. J. Azevedo, J. E. Schirber, J. M. Williams, and H. H. Wang, Phys. Rev. B Condens. Matter, 32, 2819 (1985). 10.1103/PhysRevB.32.2819 CASPubMedWeb of Science®Google Scholar H. H. Wang, M. A. Beno, U. Geiser, M. A. Firestone, K. S. Webb, L. Nuñez, G. W. Crabtree, K. D. Carlson, J. M. Williams, L. J. Azevedo, J. F. Kwak, and J. E. Schirber, Inorg. Chem., 24, 2465 (1985). 10.1021/ic00210a001 CASWeb of Science®Google Scholar H. H. Wang and J. M. Williams (unpublished results). Google Scholar H. H. Wang, P. E. Reed and J. M. Williams, Synth. Met., 14, 165 (1986). 10.1016/0379-6779(86)90180-3 CASWeb of Science®Google Scholar S. Wawzonek and S. M. Heilmann, J. Org. Chem., 39, 511 (1974). 10.1021/jo00918a021 CASWeb of Science®Google Scholar A. Weber, H. Endres, H. J. Keller, E. Gogu, I. Heinen, K. Bender, and D. Schweitzer, Z. Naturforsch., 40B, 1658 (1985). Google Scholar A. F. Wells, Structural Inorganic Chemistry, 5th ed., Oxford University Press, New York, 1984. Google Scholar M.-H. Whangbo, J. M. Williams, P. C. W. Leung, M. A. Beno, T. J. Emge, H. H. Wang, K. D. Carlson and G. W. Crabtree, J. Am. Chem. Soc., 107, 5815 (1985). 10.1021/ja00306a047 CASWeb of Science®Google Scholar M.-H. Whangbo, J. M. Williams, P. C. W. Leung, M. A. Beno, T. J. Emge, and H. H. Wang, Inorg. Chem., 24, 3500 (1985). 10.1021/ic00216a002 CASWeb of Science®Google Scholar M.-H. Whangbo, Crystal Chemistry and Properties of Materials with Quasi One-Dimensional Structures, J. Rouxel, Ed., Reidel, Dordrecht, 1985. Google Scholar M.-H. Whangbo, M. A. Beno, P. C. W. Leung, T. J. Emge, H. H. Wang, and J. M. Williams, Solid State Commun., 59, 813 (1986). 10.1016/0038-1098(86)90635-6 CASWeb of Science®Google Scholar M.-H. Whangbo, J. Chem. Phys., 73, 3854 (1980). 10.1063/1.440571 CASWeb of Science®Google Scholar R. D. Willett, R. M. Gaura, and C. P. Landee, Extended Linear Chain Compounds, Vol. 3, J. S. Miller, Ed., Plenum, New York, 1983. 10.1007/978-1-4684-4175-8_3 Google Scholar R. D. Willett and U. Geiser, Croat. Chim. Acta, 57, 737 (1984). CASWeb of Science®Google Scholar J. M. Williams, M. A. Beno, H. H. Wang, P. E. Reed, L. J. Azevedo, and J. E. Schirber, Inorg. Chem., 23, 1790 (1984). 10.1021/ic00181a001 CASWeb of Science®Google Scholar J. M. Williams, H. H. Wang, M. A. Beno, T. J. Emge, L. M. Sowa, P. T. Copps, F. Behroozi, L. N. Hall, K. D. Carlson, and G. W. Crabtree, Inorg. Chem., 23, 3839 (1984). 10.1021/ic00192a001 CASWeb of Science®Google Scholar J. M. Williams, T. J. Emge, H. H. Wang, M. A. Beno, P. T. Copps, L. N. Hall, K. D. Carlson, and G. W. Crabtree, Inorg. Chem., 23, 2558 (1984). 10.1021/ic00185a002 CASWeb of Science®Google Scholar J. M. Williams, M. A. Beno, H. H. Wang, P. C. W. Leung, T. J. Emge, U. Geiser, and K. D. Carlson, Acc. Chem. Res., 18, 261 (1985). 10.1021/ar00117a001 CASWeb of Science®Google Scholar J. M. Williams, M. A. Beno, H. H. Wang, U. W. Geiser, T. J. Emge, P. C. W. Leung, G. W. Crabtree, K. D. Carlson, L. J. Azevedo, E. L. Venturini, J. E. Schirber, J. F. Kwak, and M.-H. Whangbo, Physica, 136 B, 371 (1986). Google Scholar J. M. Williams, H. H. Wang, M. A. Beno, U. Geiser, M. A. Firestone, K. S. Webb, L. Nuñez, G. W. Crabtree, K. D. Carlson, L. J. Azevedo, J. F. Kwak, and J. E. Schirber, Physica, 135B, 520 (1985). Google Scholar J. M. Williams, Prog. Inorg. Chem., 33, 183 (1985). 10.1002/9780470166345.ch4 CASGoogle Scholar J. M. Williams, M. A. Beno, E. H. Appelman, F. Wudl, E. Aharon-Shalom, and D. Nalewajek, Mol. Cryst. Liq. Cryst., 79, 319 (1982). 10.1080/00268948208071011 CASWeb of Science®Google Scholar J. M. Williams and K. Carneiro, Adv. Inorg. Chem. Radiochem., 29, 249 (1985). 10.1016/S0898-8838(08)60252-4 CASWeb of Science®Google Scholar F. Wudl, G. M. Smith, and E. J. Hufnagel, J. Chem. Soc. Chem. Commun., 1453 (1970). Google Scholar E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, A. V. Zvarykina, and L. I. Buravov, J.E.T.P. Lett., 39, 12 (1984). CASWeb of Science®Google Scholar E. V. Yagubskii, I. F. Shchegolev, R. P. Shibaeva, D. N. Fedutin, L. P. Rozenberg, E. M. Sogomonyan, R. M. Lobkovskaya, V. N. Laukhin, A. A. Ignat'ev, A. V. Zvarykina, and L. I. Buravov, Zh. Eksp. Teor. Fiz. Pis'ma Red., 42, 167 (1985). Google Scholar E. B. Yagubskii, I. F. Shchegolev, V. N. Topnikov, S. I. Pesotskii, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, A. V. Zvarykina, S. G. Dedik, and L. I. Buravov, Sov. Phys. J.E.T.P., 61, 142 (1985). Google Scholar E. B. Yagubskii, I. F. Shchegolev, V. N. Laukhin, R. P. Shibaeva, E. E. Kostyuchenko, A. G. Khomenko, Yu. V. Sushko, and A. V. Zvarykina, J.E.T.P. Lett., 40, 1201 (1984). Web of Science®Google Scholar E. B. Yagubskii, I. F. Shchegolev, S. I. Pesotskii, V. N. Laukhin, P. A. Kononovich, M. V. Kartsovnik, and A. V. Zvarykina, J.E.T.P. Lett., 39, 328 (1984). Web of Science®Google Scholar Z. Yoshida, T. Kawase, H. Awaji, I. Sugimoto, T. Sugimoto, and S. Yoneda, Tetrahedron Lett., 24, 3469 (1983). 10.1016/S0040-4039(00)86015-3 CASWeb of Science®Google Scholar Z. Yoshida, T. Kawase, H. Awaji, and S. Yoneda, Tetrahedron Lett., 24, 3473 (1983). 10.1016/S0040-4039(00)86016-5 CASWeb of Science®Google Scholar W. L. McMillan, Phys. Rev., 167, 331 (1968). 10.1103/PhysRev.167.331 CASWeb of Science®Google Scholar V. N. Molchanov, R. P. Shibaeva, V. N. Kachinskii, E. B. Yagubskii, V. N. Simonov, and B. K. Vainshtein, Dokl. Akad. Sci. USSR, 286, 637 (1986). CASWeb of Science®Google Scholar A. J. Schultz, M. A. Beno, H. H. Wang, and J. M. Williams, Phys. Rev. B33: Condens. Matter, 7823 (1986). Google Scholar A. J. Schultz, T. J. Emge, P. C. W. Leung, M. A. Beno, H. H. Wang, and J. M. Williams, Physica 143B, 351 (1986). Google Scholar A. J. Schultz, H. H. Wang, J. M. Williams, and A. Filhol, J. Am. Chem. Soc., 108, 7853 (1986). 10.1021/ja00284a071 CASPubMedWeb of Science®Google Scholar M.-H. Whangbo, J. M. Williams, A. J. Schultz, T. J. Emge, and M. A. Beno, J. Am. Chem. Soc., 109, 90 (1987). 10.1021/ja00235a014 CASWeb of Science®Google Scholar J. E. Schirber, J. F. Kwak, M. A. Beno, H. H. Wang, and J. M. Williams, Physica 143B, 343 (1986). Google Scholar Citing Literature Progress in Inorganic Chemistry, Volume 35 ReferencesRelatedInformation}, journal={PROGRESS IN INORGANIC CHEMISTRY}, author={WILLIAMS, JM and WANG, HH and EMGE, TJ and GEISER, U and BENO, MA and LEUNG, PCW and CARLSON, KD and THORN, RJ and SCHULTZ, AJ and WHANGBO, MH}, year={1987}, pages={51–218} }