@article{coppa_fulton_kiesel_davis_pandarinath_burnette_nemanich_smith_2005, title={Structural, microstructural, and electrical properties of gold films and Schottky contacts on remote plasma-cleaned, n-type ZnO{0001} surfaces}, volume={97}, ISSN={["1089-7550"]}, DOI={10.1063/1.1898436}, abstractNote={Current–voltage measurements of Au contacts deposited on ex situ cleaned, n-type ZnO(0001) [(0001¯)] surfaces showed reverse bias leakage current densities of ∼0.01(∼0.1)A∕cm2 at 4.6 (3.75) V reverse bias and ideality factors >2 (both surfaces) before sharp, permanent breakdown (soft breakdown). This behavior was due primarily to the presence of (1.6–2.0)±0.1[(0.7–2.6)±0.1] monolayers (ML) of hydroxide, which forms an electron accumulation layer and increases the surface conductivity. In situ remote plasma cleaning of the (0001) [(0001¯)] surfaces using a 20vol%O2∕80vol%He mixture for the optimized temperatures, times, and pressure of 550±20°C(525±20°C), 60 (30) min, and 0.050 Torr reduced the thickness of the hydroxide layer to ∼0.4±0.1ML and completely eliminated all detectable hydrocarbon contamination. Subsequent cooling of both surfaces in the plasma ambient resulted in the chemisorption of oxygen and a change from 0.2 eV of downward band bending for samples cooled in vacuum to 0.3 eV of upward band bending indicative of the formation of a depletion layer of lower surface conductivity. Cooling in either ambient produced stoichiometric ZnO{0001} surfaces having an ordered crystallography as well as a step-and-terrace microstructure on the (0001¯) surface; the (0001) surface was without distinctive features. Sequentially deposited, unpatterned Au films, and presumably the rectifying gold contacts, initially grew on both surfaces cooled in the plasma ambient via the formation of islands that subsequently coalesced, as indicated by calculations from x-ray photoelectron spectroscopy data and confirmed by transmission electron microscopy. Calculations from the current–voltage data of the best contacts revealed barrier heights on the (0001) [(0001¯)] surfaces of 0.71±0.05(0.60±0.05)eV, a saturation current density of (4±0.5)×10−6A∕cm2(2.0±0.5×10−4A∕cm2), a lower value of n=1.17±0.05(1.03±0.05), a significantly lower leakage current density of ∼1.0×10−4A∕cm2(∼91×10−9A∕cm2) at 8.5 (7.0) V reverse bias prior to sharp, permanent breakdown (soft breakdown). All measured barrier heights were lower than the predicted Schottky–Mott value of 1.0 eV, indicating that the interface structure and the associated interface states affect the Schottky barrier. However, the constancy in the full width at half maximum of the core levels for Zn 2p(1.9±0.1eV) and O 1s(1.5±0.1eV), before and after sequential in situ Au depositions, indicated an abrupt, unreacted Au∕ZnO(0001) interface. Transmission electron microscopy confirmed the abruptness of an epitaxial interface. Annealing the contacts on the (0001) surface to 80±5 and 150±5°C resulted in decreases in the ideality factors to 1.12±0.05 and 1.09±0.05 and increases in saturation current density to 9.05 and 4.34μA∕cm2, the barrier height to 0.82±0.5 and 0.79±0.5eV, and in the leakage current densities to ∼2×10−3A∕cm2 at 6 V and ∼20×10−3A∕cm2 at 7 V, respectively.}, number={10}, journal={JOURNAL OF APPLIED PHYSICS}, author={Coppa, BJ and Fulton, CC and Kiesel, SM and Davis, RF and Pandarinath, C and Burnette, JE and Nemanich, RJ and Smith, DJ}, year={2005}, month={May} } @article{coppa_fulton_hartlieb_davis_rodriguez_shields_nemanich_2004, title={In situ cleaning and characterization of oxygen- and zinc-terminated, n-type, ZnO{0001} surfaces}, volume={95}, ISSN={["1089-7550"]}, DOI={10.1063/1.1695596}, abstractNote={A layer containing an average of 1.0 monolayer (ML) of adventitious carbon and averages of 1.5 ML and 1.9 ML of hydroxide was determined to be present on the respective O-terminated (0001̄) and Zn-terminated (0001) surfaces of ZnO. A diffuse low-energy electron diffraction pattern was obtained from both surfaces. In situ cleaning procedures were developed and their efficacy evaluated in terms of the concentrations of residual hydrocarbons and hydroxide and the crystallography, microstructure, and electronic structure of these surfaces. Annealing ZnO(0001̄) in pure oxygen at 600–650 °C±20 °C reduced but did not eliminate all of the detectable hydrocarbon contamination. Annealing for 15 min in pure O2 at 700 °C and 0.100±0.001 Torr caused desorption of both the hydrocarbons and the hydroxide constituents to concentrations below the detection limits (∼0.03 ML=∼0.3 at. %) of our x-ray photoelectron spectroscopy instrument. However, thermal decomposition degraded the surface microstructure. Exposure of the ZnO(0001̄) surface to a remote plasma having an optimized 20% O2/80% He mixture for the optimized time, temperature, and pressure of 30 min, 525 °C, and 0.050 Torr, respectively, resulted in the desorption of all detectable hydrocarbon species. Approximately 0.4 ML of hydroxide remained. The plasma-cleaned surface possessed an ordered crystallography and a step-and-terrace microstructure and was stoichiometric with nearly flat electronic bands. A 0.5 eV change in band bending was attributed to the significant reduction in the thickness of an accumulation layer associated with the hydroxide. The hydroxide was more tightly bound to the ZnO(0001) surface; this effect increased the optimal temperature and time of the plasma cleaning process for this surface to 550 °C and 60 min, respectively, at 0.050 Torr. Similar changes were achieved in the structural, chemical, and electronic properties of this surface; however, the microstructure only increased slightly in roughness and was without distinctive features.}, number={10}, journal={JOURNAL OF APPLIED PHYSICS}, author={Coppa, BJ and Fulton, CC and Hartlieb, PJ and Davis, RF and Rodriguez, BJ and Shields, BJ and Nemanich, RJ}, year={2004}, month={May}, pages={5856–5864} } @article{coppa_davis_nemanich_2003, title={Gold Schottky contacts on oxygen plasma-treated, n-type ZnO(000(1)over-bar)}, volume={82}, ISSN={["0003-6951"]}, DOI={10.1063/1.1536264}, abstractNote={Reverse bias current–voltage measurements of ∼100-μm-diameter gold Schottky contacts deposited on as-received, n-type ZnO(0001̄) wafers and those exposed for 30 min to a remote 20% O2/80% He plasma at 525±20 °C and cooled either in vacuum from 425 °C or the unignited plasma gas have been determined. Plasma cleaning resulted in highly ordered, stoichiometric, and smooth surfaces. Contacts on as-received material showed μA leakage currents and ideality factors >2. Contacts on plasma-cleaned wafers cooled in vacuum showed ∼36±1 nA leakage current to −4 V, a barrier height of 0.67±0.05 eV, and an ideality factor of 1.86±0.05. Cooling in the unignited plasma gas coupled with a 30 s exposure to the plasma at room temperature resulted in decreases in these parameters to ∼20 pA to −7 V, 0.60±0.05 eV, and 1.03±0.05, respectively. Differences in the measured and theoretical barrier heights indicate interface states. (0001) and (0001̄) are used in this letter to designate the polar zinc- and oxygen-terminated surfaces, respectively.}, number={3}, journal={APPLIED PHYSICS LETTERS}, author={Coppa, BJ and Davis, RF and Nemanich, RJ}, year={2003}, month={Jan}, pages={400–402} }