@article{moses_brewer_kraemer_fuierer_lowe_agbasi_sauthier_franzen_2007, title={Detection of DNA hybridization on indium tin oxide surfaces}, volume={125}, ISSN={["0925-4005"]}, DOI={10.1016/j.snb.2007.03.009}, abstractNote={Indium tin oxide (ITO) surfaces were modified with ssDNA by coupling oligonucleotides to a monolayer of 12-phosphonododecanoic acid (12-PDA) on ITO surfaces. This coupling involved the formation of an amide bond between the carboxylic acid moiety of 12-PDA to the amine group of a 5′-aminopropyl-labeled single strand of DNA. The self-assembled monolayer of 12-PDA and surface-attached oligonucleotides were characterized by X-ray photoelectron and reflectance FTIR spectroscopy. Detection of selective surface DNA hybridization was achieved by labeling the target ssDNA with gold nanoparticles. The presence of gold nanoparticles was probed using X-ray photoelectron spectroscopy, stripping voltammetry, atomic force microscopy, thermography, photoelectrochemistry (chronoamperometry) and cyclic voltammetry (CV). CV was used to successfully detect DNA hybridization for nanoparticle concentrations as low as 10 pM when using the gold nanoparticles bound to an ITO electrode as catalysts for the electrochemical oxidation of FeCl2. The studies described here provided the basis for surface attachment methodology for various electrochemical and thermographic sensing methods that use ITO thin films as a substrate.}, number={2}, journal={SENSORS AND ACTUATORS B-CHEMICAL}, author={Moses, Selina and Brewer, Scott H. and Kraemer, Stephan and Fuierer, Ryan R. and Lowe, Lisa B. and Agbasi, Chiamaka and Sauthier, Marc and Franzen, Stefan}, year={2007}, month={Aug}, pages={574–580} } @article{agbasi-porter_ryman-rasmussen_franzen_feldheim_2006, title={Transcription inhibition using oligonucleotide-modified gold nanoparticles}, volume={17}, ISSN={["1043-1802"]}, DOI={10.1021/bc060100f}, abstractNote={The capture of T7 RNA polymerase using double-stranded promoter DNA on the surface of gold nanoparticles has been demonstrated. The competitive binding and inhibition of T7 RNA polymerase due to specific interactions on the nanoparticle surface represents a transcription factor decoy approach in a model system. The efficiency of inhibition was determined for various nanoparticle sizes, surface coverage, and linker length for double-stranded promoter DNA on gold nanoparticles. The experiments provide a basis for determining the accessibility of binding sites on nanoparticle surfaces for applications involving cell targeting or the use of nanoparticles as binding agents in solution.}, number={5}, journal={BIOCONJUGATE CHEMISTRY}, author={Agbasi-Porter, Chiamaka and Ryman-Rasmussen, Jessica and Franzen, Stefan and Feldheim, Daniel}, year={2006}, month={Sep}, pages={1178–1183} } @article{lowe_brewer_kramer_fuierer_qian_agbasi-porter_moses_franzen_feldheim_2003, title={Laser-induced temperature jump electrochemistry on gold nanoparticle-coated electrodes}, volume={125}, ISSN={["0002-7863"]}, DOI={10.1021/ja036672h}, abstractNote={Laser-induced temperature jumps (LITJs) at gold nanoparticle-coated indium tin oxide (ITO) electrodes in contact with electrolyte solutions have been measured using temperature-sensitive redox probes and an infrared charge-coupled device. Upon irradiation with 532 nm light, interfacial temperature changes of ca. 20 degrees C were recorded for particle coverages of ca. 1 x 1010 cm-2. In the presence of a redox molecule, LITJ yields open-circuit photovoltages and photocurrents that are proportional to the number of particles on the surface. When ssDNA was used to chemisorb nanoparticles to the ITO surface, solution concentrations as low as 100 fM of target ssDNA-modified nanoparticles could be detected at the electrode surface.}, number={47}, journal={JOURNAL OF THE AMERICAN CHEMICAL SOCIETY}, author={Lowe, LB and Brewer, SH and Kramer, S and Fuierer, RR and Qian, GG and Agbasi-Porter, CO and Moses, S and Franzen, S and Feldheim, DL}, year={2003}, month={Nov}, pages={14258–14259} }