@misc{lindsey_tamaru_yu_2005, title={Facile synthesis of 1,9-diacyldipyrromethanes}, volume={6,924,375}, publisher={Washington, DC: U.S. Patent and Trademark Office}, author={Lindsey, J. S. and Tamaru, S.-I. and Yu, L.}, year={2005} } @article{zaidi_muthukumaran_tamaru_lindsey_2004, title={9-Acylation of 1-acyldipyrromethanes containing a dialkylboron mask for the alpha-acylpyrrole motif}, volume={69}, ISSN={["0022-3263"]}, DOI={10.1021/jo048587d}, abstractNote={1,9-Diacyldipyrromethanes are important precursors to porphyrins, yet synthetic access remains limited owing to (1) poor conversion in the 9-acylation of 1-acyldipyrromethanes and (2) handling difficulties because acyldipyrromethanes typically streak upon chromatography and give amorphous powders upon attempted crystallization. A reliable means for converting a dipyrromethane to a 1-acyldipyrromethane−dialkylboron complex was recently developed, where the dialkylboron (BR2) unit renders the complex hydrophobic and thereby facilitates isolation. Herein a refined preparation of 1,9-diacyldipyrromethanes is presented that employs the 1-acyldipyrromethane−BR2 complex as a substrate for 9-acylation. The dialkylboron unit provides protection for the α-acylpyrrole unit. 9-Acylation requires formation of the pyrrolyl−MgBr reagent and the presence of 1 equiv of a nonnucleophilic base to quench the proton liberated upon α-acylation. Reaction of the 1-acyldipyrromethane−BR2 complex (1 equiv) with mesitylmagnesium br...}, number={24}, journal={JOURNAL OF ORGANIC CHEMISTRY}, author={Zaidi, SHH and Muthukumaran, K and Tamaru, S and Lindsey, JS}, year={2004}, month={Nov}, pages={8356–8365} } @article{tamaru_yu_youngblood_muthukumaran_taniguchi_lindsey_2004, title={A tin-complexation strategy for use with diverse acylation methods in the preparation of 1,9-diacyldipyrromethanes}, volume={69}, ISSN={["0022-3263"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-0842285782&partnerID=MN8TOARS}, DOI={10.1021/jo035622s}, abstractNote={The acylation of dipyrromethanes to form 1,9-diacyldipyrromethanes is an essential step in the rational synthesis of porphyrins. Although several methods for acylation are available, purification is difficult because 1,9-diacyldipyrromethanes typically streak extensively upon chromatography and give amorphous powders upon attempted crystallization. A solution to this problem has been achieved by reacting the 1,9-diacyldipyrromethane with Bu(2)SnCl(2) to give the corresponding dibutyl(5,10-dihydrodipyrrinato)tin(IV) complex. The reaction is selective for dipyrromethanes that bear acyl groups at both the 1- and 9-positions but otherwise is quite tolerant of diverse substituents. The diacyldipyrromethane-tin complexes are stable to air and water, are highly soluble in common organic solvents, crystallize readily, and chromatograph without streaking. Four methods (Friedel-Crafts, Grignard, Vilsmeier, benzoxathiolium salt) were examined for the direct 1,9-diacylation of a dipyrromethane or the 9-acylation of a 1-acyldipyrromethane. In each case, treatment of the crude reaction mixture with Bu(2)SnCl(2) and TEA at room temperature enabled facile isolation of multigram quantities of the 1,9-diacyldipyrromethane-tin complex. The diacyldipyrromethane-tin complexes could be decomplexed with TFA in nearly quantitative yield. Alternatively, use of a diacyldipyrromethane-tin complex in a porphyrin-forming reaction (reduction with NaBH(4), acid-catalyzed condensation with a dipyrromethane, DDQ oxidation) afforded the desired free base porphyrin in yield comparable to that obtained from the uncomplexed diacyldipyrromethane. The acylation/tin-complexation strategy has been applied to a bis(dipyrromethane) and a porphyrin-dipyrromethane. In summary, the tin-complexation strategy has broad scope, is compatible with diverse acylation methods, and greatly facilitates access to 1,9-diacyldipyrromethanes.}, number={3}, journal={JOURNAL OF ORGANIC CHEMISTRY}, publisher={American Chemical Society (ACS)}, author={Tamaru, S and Yu, LH and Youngblood, WJ and Muthukumaran, K and Taniguchi, M and Lindsey, JS}, year={2004}, month={Feb}, pages={765–777} } @article{li_surthi_mathur_gowda_misra_sorenson_tenent_kuhr_tamaru_lindsey_et al._2003, title={Electrical characterization of redox-active molecular monolayers on SiO2 for memory applications}, volume={83}, ISSN={["0003-6951"]}, DOI={10.1063/1.1584088}, abstractNote={Hybrid silicon capacitors have been successfully fabricated by attaching monolayers of redox-active molecules via self-assembly to ultrathin silicon dioxide layers. Capacitance, conductance, and cyclic voltammetric measurements have been used to characterize these capacitors. The presence of distinct capacitance and conductance peaks associated with oxidation and reduction of the monolayers at low gate voltages indicates discrete electron storage states for these capacitors, suggesting their feasibility in memory devices. The inherent molecular scalability and low-power operation coupled with existing silicon technology support the approach of hybrid molecule-silicon devices as a strong candidate for next generation electronic devices.}, number={1}, journal={APPLIED PHYSICS LETTERS}, author={Li, QL and Surthi, S and Mathur, G and Gowda, S and Misra, V and Sorenson, TA and Tenent, RC and Kuhr, WG and Tamaru, S and Lindsey, JS and et al.}, year={2003}, month={Jul}, pages={198–200} } @article{muthukumaran_loewe_ambroise_tamaru_li_mathur_bocian_misra_lindsey_2004, title={Porphyrins bearing arylphosphonic acid tethers for attachment to oxide surfaces}, volume={69}, ISSN={["0022-3263"]}, DOI={10.1021/jo034945l}, abstractNote={Synthetic molecules bearing phosphonic acid groups can be readily attached to oxide surfaces. As part of a program in molecular-based information storage, we have developed routes for the synthesis of diverse porphyrinic compounds bearing phenylphosphonic acid tethers. The routes enable (1) incorporation of masked phosphonic acid groups in precursors for use in the rational synthesis of porphyrinic compounds and (2) derivatization of porphyrins with masked phosphonic acid groups. The precursors include dipyrromethanes, monoacyldipyrromethanes, and diacyldipyrromethanes. The tert-butyl group has been used to mask the dihydroxyphosphoryl substituent. The di-tert-butyloxyphosphoryl unit is stable to the range of conditions employed in syntheses of porphyrins and multiporphyrin arrays yet can be deprotected under mild conditions (TMS-Cl/TEA or TMS-Br/TEA in refluxing CHCl(3)) that do not cause demetalation of zinc or magnesium porphyrins. The porphyrinic compounds that have been prepared include (1) A(3)B-, trans-AB(2)C-, and ABCD-porphyrins that bear a single phenylphosphonic acid group, (2) a trans-A(2)B(2)-porphyrin bearing two phenylphosphonic acid groups, (3) a chlorin that bears a single phenylphosphonic acid group, and (4) a porphyrin dyad bearing a single phenylphosphonic acid group. For selected porphyrin-phosphonic acids, the electrochemical characteristics have been investigated for molecules tethered to SiO(2) surfaces grown on doped Si. The voltammetric behavior indicates that the porphyrin-phosphonic acids form robust, electrically well-behaved monolayers on the oxide surface.}, number={5}, journal={JOURNAL OF ORGANIC CHEMISTRY}, author={Muthukumaran, K and Loewe, RS and Ambroise, A and Tamaru, SI and Li, QL and Mathur, G and Bocian, DF and Misra, V and Lindsey, JS}, year={2004}, month={Mar}, pages={1444–1452} }