@article{singhal_capracotta_martin_khan_fedkiw_2004, title={Transport properties of hectorite based nanocomposite single ion conductors}, volume={128}, ISSN={["0378-7753"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-1542333424&partnerID=MN8TOARS}, DOI={10.1016/j.jpowsour.2003.09.064}, abstractNote={The ionic conductivity and rheological properties of clay filled nanocomposite electrolytes are reported. These electrolytes, which have potential use in lithium-ion batteries, consist of lithium-exchanged hectorite, a 2:1 layered smectite clay, dispersed in ethylene carbonate (EC) or a mixture of EC+polyethylene glycol di-methyl ether (PEG-dm, 250 MW). All samples exhibit elastic, gel-like characteristics and room temperature conductivities of order 0.1 mS/cm. A maximum in conductivity is observed at about 25 wt.% clay concentration. A maximum in hectorite basal layer spacing is also observed in the same concentration range, suggesting a direct correlation between conductivity and layer spacing. The elastic modulus and yield stress increase by two orders of magnitude and the conductivity increases by one order of magnitude with increase in hectorite concentration from 5 to 25%, which indicates the significant influence of hectorite content in determining the characteristics of these single-ion conductors. The solvent composition plays a secondary role in this regard, with addition of PEG-dm to the base EC+hectorite electrolyte producing moderate improvement in conductivity. Similarly, the addition of PEG-dm to EC+hectorite affects an increase by only a factor of three in the elastic modulus and yield stress of the electrolyte.}, number={2}, journal={JOURNAL OF POWER SOURCES}, author={Singhal, RG and Capracotta, MD and Martin, JD and Khan, SA and Fedkiw, PS}, year={2004}, month={Apr}, pages={247–255} }