@article{xiang_thorne_seo_zhang_thomas_ricklefs_2008, title={Rates of nucleotide substitution in Cornaceae (Cornales)—Pattern of variation and underlying causal factors}, volume={49}, ISSN={10557903}, url={https://linkinghub.elsevier.com/retrieve/pii/S1055790308003606}, DOI={10.1016/j.ympev.2008.07.010}, abstractNote={Identifying causes of genetic divergence is a central goal in evolutionary biology. Although rates of nucleotide substitution vary among taxa and among genes, the causes of this variation tend to be poorly understood. In the present study, we examined the rate and pattern of molecular evolution for five DNA regions over a phylogeny of Cornus, the single genus of Cornaceae. To identify evolutionary mechanisms underlying the molecular variation, we employed Bayesian methods to estimate divergence times and to infer how absolute rates of synonymous and nonsynonymous substitutions and their ratios change over time. We found that the rates vary among genes, lineages, and through time, and differences in mutation rates, selection type and intensity, and possibly genetic drift all contributed to the variation of substitution rates observed among the major lineages of Cornus. We applied independent contrast analysis to explore whether speciation rates are linked to rates of molecular evolution. The results showed no relationships for individual genes, but suggested a possible localized link between species richness and rate of nonsynonymous nucleotide substitution for the combined cpDNA regions. Furthermore, we detected a positive correlation between rates of molecular evolution and morphological change in Cornus. This was particularly pronounced in the dwarf dogwood lineage, in which genome-wide acceleration in both molecular and morphological evolution has likely occurred.}, number={1}, journal={Molecular Phylogenetics and Evolution}, author={Xiang, Qiu-Yun (Jenny) and Thorne, Jeffrey L. and Seo, Tae-Kun and Zhang, Wenheng and Thomas, David T. and Ricklefs, Robert E.}, year={2008}, month={Oct}, pages={327–342} } @article{seo_kishino_thorne_2005, title={Incorporating gene-specific variation when inferring and evaluating optimal evolutionary tree topologies from multilocus sequence data}, volume={102}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.0408313102}, abstractNote={Because of the increase of genomic data, multiple genes are often available for the inference of phylogenetic relationships. The simple approach for combining multiple genes from the same taxon is to concatenate the sequences and then ignore the fact that different positions in the concatenated sequence came from different genes. Here, we discuss two criteria for inferring the optimal tree topology from data sets with multiple genes. These criteria are designed for multigene data sets where gene-specific evolutionary features are too important to ignore. One criterion is conventional and is obtained by taking the sum of log-likelihoods over all genes. The other criterion is obtained by dividing the log-likelihood for a gene by its sequence length and then taking the arithmetic mean over genes of these ratios. A similar strategy could be adopted with parsimony scores. The optimal tree is then declared to be the one for which the sum or the arithmetic mean is maximized. These criteria are justified within a two-stage hierarchical framework. The first level of the hierarchy represents gene-specific evolutionary features, and the second represents site-specific features for given genes. For testing significance of the optimal topology, we suggest a two-stage bootstrap procedure that involves resampling genes and then resampling alignment columns within resampled genes. An advantage of this procedure over concatenation is that it can effectively account for gene-specific evolutionary features. We discuss the applicability of the two-stage bootstrap idea to the Kishino–Hasegawa test and the Shimodaira–Hasegawa test.}, number={12}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Seo, TK and Kishino, H and Thorne, JL}, year={2005}, month={Mar}, pages={4436–4441} } @article{seo_kishino_thorne_2004, title={Estimating absolute rates of synonymous and nonsynonymous nucleotide substitution in order to characterize natural selection and date species divergences}, volume={21}, ISSN={["1537-1719"]}, DOI={10.1093/molbev/msh088}, abstractNote={The rate of molecular evolution can vary among lineages. Sources of this variation have differential effects on synonymous and nonsynonymous substitution rates. Changes in effective population size or patterns of natural selection will mainly alter nonsynonymous substitution rates. Changes in generation length or mutation rates are likely to have an impact on both synonymous and nonsynonymous substitution rates. By comparing changes in synonymous and nonsynonymous rates, the relative contributions of the driving forces of evolution can be better characterized. Here, we introduce a procedure for estimating the chronological rates of synonymous and nonsynonymous substitutions on the branches of an evolutionary tree. Because the widely used ratio of nonsynonymous and synonymous rates is not designed to detect simultaneous increases or simultaneous decreases in synonymous and nonsynonymous rates, the estimation of these rates rather than their ratio can improve characterization of the evolutionary process. With our Bayesian approach, we analyze cytochrome oxidase subunit I evolution in primates and infer that nonsynonymous rates have a greater tendency to change over time than do synonymous rates. Our analysis of these data also suggests that rates have been positively correlated.}, number={7}, journal={MOLECULAR BIOLOGY AND EVOLUTION}, author={Seo, TK and Kishino, H and Thorne, JL}, year={2004}, month={Jul}, pages={1201–1213} }