@article{chitrphiromsri_kuznetsov_song_barker_2006, title={Investigation of feasibility of developing intelligent firefighter-protective garments based on the utilization of a water-injection system}, volume={49}, ISSN={["1521-0634"]}, DOI={10.1080/10407780500359869}, abstractNote={ABSTRACT This research develops a new approach to designing and creating a prototype of an intelligent firefighter thermal-protective garment. During a flash fire exposure, this intelligent garment will absorb a significant amount of the incident heat flux due to evaporation of the injected water, thus limiting the temperature increase and the total heat flux to the firefighter's skin. A comprehensive mathematical model of heat and mass transport in the fabric layer during the flash fire exposure is suggested and numerically implemented using a finite-volume technique. A computational investigation is performed to optimize the performance of this novel garment system in terms of the activation temperature and the necessary amount of injected water.}, number={5}, journal={NUMERICAL HEAT TRANSFER PART A-APPLICATIONS}, author={Chitrphiromsri, P and Kuznetsov, AV and Song, G and Barker, RL}, year={2006}, month={Sep}, pages={427–450} } @article{song_barker_2004, title={Effects of variations in skin model on evaluation of thermal protective clothing performance}, volume={4}, number={11}, journal={AATCC Review}, author={Song, G. W. and Barker, R.}, year={2004}, pages={21–24} } @article{song_barker_hamouda_kuznetsov_chitrphiromsri_grimes_2004, title={Modeling the thermal protective performance of heat resistant garments in flash fire exposures}, volume={74}, ISSN={["0040-5175"]}, DOI={10.1177/004051750407401201}, abstractNote={ This research developes a numerical model to predict skin burn injury resulting from heat transfer through a protective garment worn by an instrumented manikin exposed to laboratory-controlled flash fire exposures. This model incorporates characteristics of the simulated flash fire generated in the chamber and the heat-induced changes in fabric thermophysical properties. The model also accounts for clothing air layers between the garment and the manikin. The model is validated using an instrumented manikin fire test system. Results from the numerical model help contribute to a better understanding of the heat transfer process in protective garments exposed to intense flash fires, and to establishing systematic methods for engineering materials and garments to produce optimum thermal protective performance. }, number={12}, journal={TEXTILE RESEARCH JOURNAL}, author={Song, GW and Barker, RL and Hamouda, H and Kuznetsov, AV and Chitrphiromsri, P and Grimes, RV}, year={2004}, month={Dec}, pages={1033–1040} }