@article{barker_guerth-schacher_grimes_hamouda_2006, title={Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures}, volume={76}, ISSN={["0040-5175"]}, DOI={10.1177/0040517506053947}, abstractNote={ This paper describes research on the effects of absorbed moisture on the thermal protective performance of the fire fighter turnout materials exposed to thermal assaults lower than flashover conditions. A thermal testing platform and sensor are used to measure thermal protective performance of turnout systems exposed to a sub flashover heat flux range 6.3 kw/m2 (0.15 cal/ cm2 s). The effects of moisture level on predicted second-degree burn injury for turnout systems having different moisture vapor permeability and total heat loss are discussed. Heat transfer analysis and experimental results show that, for selected test conditions, moisture negatively impacts protective performance most severely when the amount of added moisture is at a comparatively low level (15–20% of turnout system weight). }, number={1}, journal={TEXTILE RESEARCH JOURNAL}, author={Barker, RL and Guerth-Schacher, C and Grimes, RV and Hamouda, H}, year={2006}, month={Jan}, pages={27–31} } @article{song_barker_hamouda_kuznetsov_chitrphiromsri_grimes_2004, title={Modeling the thermal protective performance of heat resistant garments in flash fire exposures}, volume={74}, ISSN={["0040-5175"]}, DOI={10.1177/004051750407401201}, abstractNote={ This research developes a numerical model to predict skin burn injury resulting from heat transfer through a protective garment worn by an instrumented manikin exposed to laboratory-controlled flash fire exposures. This model incorporates characteristics of the simulated flash fire generated in the chamber and the heat-induced changes in fabric thermophysical properties. The model also accounts for clothing air layers between the garment and the manikin. The model is validated using an instrumented manikin fire test system. Results from the numerical model help contribute to a better understanding of the heat transfer process in protective garments exposed to intense flash fires, and to establishing systematic methods for engineering materials and garments to produce optimum thermal protective performance. }, number={12}, journal={TEXTILE RESEARCH JOURNAL}, author={Song, GW and Barker, RL and Hamouda, H and Kuznetsov, AV and Chitrphiromsri, P and Grimes, RV}, year={2004}, month={Dec}, pages={1033–1040} }