@article{raman_meyers_dean_donofrio_2018, title={Characterizing Small RNAs in Filamentous Fungi Using the Rice Blast Fungus, Magnaporthe oryzae, as an Example}, volume={1848}, ISBN={["978-1-4939-8723-8"]}, ISSN={["1940-6029"]}, DOI={10.1007/978-1-4939-8724-5_5}, abstractNote={The goal of this chapter is to provide a framework of sequential steps for small RNA (sRNA) analysis in filamentous fungi. Here, we present protocols for (1) comparative analysis of sRNAs in different conditions, (2) comparisons of sRNA libraries to RNAseq data and (3) identification and analysis of methylguanosine-capped and polyadenylated sRNAs (CPA-sRNAs). This species of small RNA is particularly interesting in Magnaporthe oryzae, as they map to transcription start and end sites of protein-coding genes. While we do not provide specific command lines for scripts, we provide a general framework for steps needed to carry out all three types of analyses, including relevant references, websites and free online tools. Screenshots are provided from our own customized interface using M. oryzae as an example, to assist the reader in visualizing many of the steps.}, journal={PLANT PATHOGENIC FUNGI AND OOMYCETES: METHODS AND PROTOCOLS}, author={Raman, Vidhyavathi and Meyers, Blake C. and Dean, Ralph A. and Donofrio, Nicole M.}, year={2018}, pages={53–66} } @misc{oh_donofrio_pan_coughlan_brown_meng_mitchell_dean_2008, title={Transcriptome analysis reveals new insight into appressorium formation and function in the rice blast fungus Magnaporthe oryzae}, volume={9}, ISSN={["1474-760X"]}, DOI={10.1186/gb-2008-9-5-r85}, abstractNote={Rice blast disease is caused by the filamentous Ascomycetous fungus Magnaporthe oryzae and results in significant annual rice yield losses worldwide. Infection by this and many other fungal plant pathogens requires the development of a specialized infection cell called an appressorium. The molecular processes regulating appressorium formation are incompletely understood. We analyzed genome-wide gene expression changes during spore germination and appressorium formation on a hydrophobic surface compared to induction by cAMP. During spore germination, 2,154 (approximately 21%) genes showed differential expression, with the majority being up-regulated. During appressorium formation, 357 genes were differentially expressed in response to both stimuli. These genes, which we refer to as appressorium consensus genes, were functionally grouped into Gene Ontology categories. Overall, we found a significant decrease in expression of genes involved in protein synthesis. Conversely, expression of genes associated with protein and amino acid degradation, lipid metabolism, secondary metabolism and cellular transportation exhibited a dramatic increase. We functionally characterized several differentially regulated genes, including a subtilisin protease (SPM1) and a NAD specific glutamate dehydrogenase (Mgd1), by targeted gene disruption. These studies revealed hitherto unknown findings that protein degradation and amino acid metabolism are essential for appressorium formation and subsequent infection. We present the first comprehensive genome-wide transcript profile study and functional analysis of infection structure formation by a fungal plant pathogen. Our data provide novel insight into the underlying molecular mechanisms that will directly benefit efforts to identify fungal pathogenicity factors and aid the development of new disease management strategies.}, number={5}, journal={GENOME BIOLOGY}, author={Oh, Yeonyee and Donofrio, Nicole and Pan, Huaqin and Coughlan, Sean and Brown, Douglas E. and Meng, Shaowu and Mitchell, Thomas and Dean, Ralph A.}, year={2008} } @article{meng_patel_heist_betts_tucker_galadima_donofrio_brown_mitchell_li_et al._2007, title={A systematic analysis of T-DNA insertion events in Magnaporthe oryzae}, volume={44}, ISSN={["1096-0937"]}, DOI={10.1016/j.fgb.2007.04.002}, abstractNote={We describe here the analysis of random T-DNA insertions that were generated as part of a large-scale insertional mutagenesis project for Magnaporthe oryzae. Chromosomal regions flanking T-DNA insertions were rescued by inverse PCR, sequenced and used to search the M. oryzae genome assembly. Among the 175 insertions for which at least one flank was rescued, 137 had integrated in single-copy regions of the genome, 17 were in repeated sequences, one had no match to the genome, and the remainder were unassigned due to illegitimate T-DNA integration events. These included in order of abundance: head-to-tail tandem insertions, right border excision failures, left border excision failures and insertion of one T-DNA into another. The left borders of the T-DNA were frequently truncated and inserted in sequences with micro-homology to the left terminus. By contrast the right borders were less prone to degradation and appeared to have been integrated in a homology-independent manner. Gross genome rearrangements rarely occurred when the T-DNAs integrated in single-copy regions, although most insertions did cause small deletions at the target site. Significant insertion bias was detected, with promoters receiving two times more T-DNA hits than expected, and open reading frames receiving three times fewer. In addition, we found that the distribution of T-DNA inserts among the M. oryzae chromosomes was not random. The implications of these findings with regard to saturation mutagenesis of the M. oryzae genome are discussed.}, number={10}, journal={FUNGAL GENETICS AND BIOLOGY}, author={Meng, Yan and Patel, Gayatri and Heist, Melanie and Betts, Melania F. and Tucker, Sara L. and Galadima, Natalia and Donofrio, Nicole M. and Brown, Doug and Mitchell, Thomas K. and Li, Lei and et al.}, year={2007}, month={Oct}, pages={1050–1064} } @article{betts_tucker_galadima_meng_patel_li_donofrio_floyd_nolin_brown_et al._2007, title={Development of a high throughput transformation system for insertional mutagenesis in Magnaporthe oryzae}, volume={44}, ISSN={["1087-1845"]}, DOI={10.1016/j.fgb.2007.05.001}, abstractNote={Towards the goal of disrupting all genes in the genome of Magnaporthe oryzae and identifying their function, a collection of >55,000 random insertion lines of M. oryzae strain 70-15 were generated. All strains were screened to identify genes involved in growth rate, conidiation, pigmentation, auxotrophy, and pathogenicity. Here, we provide a description of the high throughput transformation and analysis pipeline used to create our library. Transformed lines were generated either by CaCl2/PEG treatment of protoplasts with DNA or by Agrobacterium tumefaciens-mediated transformation (ATMT). We describe the optimization of both approaches and compare their efficiency. ATMT was found to be a more reproducible method, resulting in predominantly single copy insertions, and its efficiency was high with up to 0.3% of conidia being transformed. The phenotypic data is accessible via a public database called MGOS and all strains are publicly available. This represents the most comprehensive insertional mutagenesis analysis of a fungal pathogen.}, number={10}, journal={FUNGAL GENETICS AND BIOLOGY}, author={Betts, Melania F. and Tucker, Sara L. and Galadima, Natalia and Meng, Yan and Patel, Gayatri and Li, Lei and Donofrio, Nicole and Floyd, Anna and Nolin, Shelly and Brown, Doug and et al.}, year={2007}, month={Oct}, pages={1035–1049} } @article{donofrio_oh_lundy_pan_brown_jeong_coughlan_mitchell_dean_2006, title={Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea}, volume={43}, ISSN={["1087-1845"]}, DOI={10.1016/j.fgb.2006.03.005}, abstractNote={Efficient regulation of nitrogen metabolism likely plays a role in the ability of fungi to exploit ecological niches. To learn about regulation of nitrogen metabolism in the rice blast pathogen Magnaporthe grisea, we undertook a genome-wide analysis of gene expression under nitrogen-limiting conditions. Five hundred and twenty genes showed increased transcript levels at 12 and 48 h after shifting the fungus to media lacking nitrate as a nitrogen source. Thirty-nine of these genes have putative functions in amino acid metabolism and uptake, and include the global nitrogen regulator in M. grisea, NUT1. Evaluation of seven nitrogen starvation-induced genes revealed that all were expressed during rice infection. Targeted gene replacement on one such gene, the vacuolar serine protease, SPM1, resulted in decreased sporulation and appressorial development as well as a greatly attenuated ability to cause disease. Data are discussed in the context of nitrogen metabolism under starvation conditions, as well as conditions potentially encountered during invasive growth in planta.}, number={9}, journal={FUNGAL GENETICS AND BIOLOGY}, author={Donofrio, N. M. and Oh, Y. and Lundy, R. and Pan, H. and Brown, D. E. and Jeong, J. S. and Coughlan, S. and Mitchell, T. K. and Dean, R. A.}, year={2006}, month={Sep}, pages={605–617} } @article{donofrio_rajagopalon_brown_diener_windham_nolin_floyd_mitchell_galadima_tucker_et al._2005, title={PACLIMS: A component LIM system for high-throughput functional genomic analysis}, volume={6}, journal={BMC Bioinformatics}, author={Donofrio, N. and Rajagopalon, R. and Brown, D. and Diener, S. and Windham, D. and Nolin, S. and Floyd, A. and Mitchell, T. and Galadima, N. and Tucker, S. and et al.}, year={2005} } @article{dean_talbot_ebbole_farman_mitchell_orbach_thon_kulkarni_xu_pan_et al._2005, title={The genome sequence of the rice blast fungus Magnaporthe grisea}, volume={434}, ISSN={["1476-4687"]}, DOI={10.1038/nature03449}, abstractNote={Magnaporthe grisea is the most destructive pathogen of rice worldwide and the principal model organism for elucidating the molecular basis of fungal disease of plants. Here, we report the draft sequence of the M. grisea genome. Analysis of the gene set provides an insight into the adaptations required by a fungus to cause disease. The genome encodes a large and diverse set of secreted proteins, including those defined by unusual carbohydrate-binding domains. This fungus also possesses an expanded family of G-protein-coupled receptors, several new virulence-associated genes and large suites of enzymes involved in secondary metabolism. Consistent with a role in fungal pathogenesis, the expression of several of these genes is upregulated during the early stages of infection-related development. The M. grisea genome has been subject to invasion and proliferation of active transposable elements, reflecting the clonal nature of this fungus imposed by widespread rice cultivation. The genome sequence of the most destructive pathogen of rice is now available. The rice blast fungus Magnaporthe grisea is the first fungal plant pathogen genome to be characterized, and with the rice genome already sequenced, it provides a unique opportunity to study the relationship between host and pathogen. Early findings include a family of novel G-protein-coupled receptors involved in disrupting host defences, a candidate target for fungicides specific for this pest. The genome has been invaded by other genetic elements in the past, probably contributing to rapid evolution when faced with newly introduced resistant rice varieties.}, number={7036}, journal={NATURE}, author={Dean, RA and Talbot, NJ and Ebbole, DJ and Farman, ML and Mitchell, TK and Orbach, MJ and Thon, M and Kulkarni, R and Xu, JR and Pan, HQ and et al.}, year={2005}, month={Apr}, pages={980–986} }