@article{korobkina_medlin_wehring_hawari_huffman_young_beaumont_palmquist_2014, title={Ultracold neutron source at the PULSTAR reactor: Engineering design and cryogenic testing}, volume={767}, ISSN={1872-9576}, DOI={10.1016/j.nima.2014.08.016}, abstractNote={Construction is completed and commissioning is in progress for an ultracold neutron (UCN) source at the PULSTAR reactor on the campus of North Carolina State University. The source utilizes two stages of neutron moderation, one in heavy water at room temperature and the other in solid methane at ~40K, followed by a converter stage, solid deuterium at 5 K, that allows a single down scattering of cold neutrons to provide UCN. The UCN source rolls into the thermal column enclosure of the PULSTAR reactor, where neutrons will be delivered from a bare face of the reactor core by streaming through a graphite-lined assembly. The source infrastructure, i.e., graphite-lined assembly, heavy-water system, gas handling system, and helium liquefier cooling system, has been tested and all systems operate as predicted. The research program being considered for the PULSTAR UCN source includes the physics of UCN production, fundamental particle physics, and material surface studies of nanolayers containing hydrogen. In the present paper we report details of the engineering and cryogenic design of the facility as well as results of critical commissioning tests without neutrons.}, journal={NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT}, author={Korobkina, E. and Medlin, G. and Wehring, B. and Hawari, A. I. and Huffman, P. R. and Young, A. R. and Beaumont, B. and Palmquist, G.}, year={2014}, month={Dec}, pages={169–175} } @article{yang_brome_butterworth_dzhosyuk_mattoni_mckinsey_michniak_doyle_golub_korobkina_et al._2008, title={Invited article: Development of high-field superconducting Ioffe magnetic traps}, volume={79}, number={3}, journal={Review of Scientific Instruments}, author={Yang, L. and Brome, C. R. and Butterworth, J. S. and Dzhosyuk, S. N. and Mattoni, C. E. H. and McKinsey, D. N. and Michniak, R. A. and Doyle, J. M. and Golub, R. and Korobkina, E. and et al.}, year={2008} } @article{korobkna_wehring_hawari_young_huffman_golub_xu_palmquist_2007, title={An ultracold neutron source at the NC state university PULSTAR reactor}, volume={579}, ISSN={0168-9002}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-34547682155&partnerID=MN8TOARS}, DOI={10.1016/j.nima.2007.04.116}, abstractNote={Research and development is being completed for an ultracold neutron (UCN) source to be installed at the PULSTAR reactor on the campus of North Carolina State University (NCSU). The objective is to establish a university-based UCN facility with sufficient UCN intensity to allow world-class fundamental and applied research with UCN. To maximize the UCN yield, a solid ortho-D2 converter will be implemented coupled to two moderators, D2O at room temperature, to thermalize reactor neutrons, and solid CH4, to moderate the thermal neutrons to cold-neutron energies. The source assembly will be located in a tank of D2O in the space previously occupied by the thermal column of the PULSTAR reactor. Neutrons leaving a bare face of the reactor core enter the D2O tank through a 45×45 cm cross-sectional area void between the reactor core and the D2O tank. Liquid He will cool the disk-shaped UCN converter to below 5 K. Independently, He gas will cool the cup-shaped CH4 cold-neutron moderator to an optimum temperature between 20 and 40 K. The UCN will be transported from the converter to experiments by a guide with an inside diameter of 16 cm. Research areas being considered for the PULSTAR UCN source include time-reversal violation in neutron beta decay, neutron lifetime determination, support measurements for a neutron electric-dipole-moment search, and nanoscience applications.}, number={1}, journal={NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT}, author={Korobkna, E. and Wehring, B. W. and Hawari, A. I. and Young, A. R. and Huffman, P. R. and Golub, R. and Xu, Y. and Palmquist, G.}, year={2007}, month={Aug}, pages={530–533} } @article{huffman_greene_allen_cianciolo_huerto_koehler_desai_mahurin_yue_palmquist_et al._2005, title={Beamline performance simulations for the fundamental neutron physics beamline at the spallation neutron source}, volume={110}, ISSN={["1044-677X"]}, DOI={10.6028/jres.110.018}, abstractNote={Monte Carlo simulations are being performed to design and characterize the neutron optics components for the two fundamental neutron physics beamlines at the Spallation Neutron Source. Optimization of the cold beamline includes characterization of the guides and benders, the neutron transmission through the 0.89 nm monochromator, and the expected performance of the four time-of-flight choppers. The locations and opening angles of the choppers have been studied using a simple spreadsheet-based analysis that was developed for other SNS chopper instruments. The spreadsheet parameters are then optimized using Monte Carlo techniques to obtain the results presented in this paper. Optimization of the 0.89 nm beamline includes characterizing the double crystal monochromator and the downstream guides. The simulations continue to be refined as components are ordered and their exact size and performance specifications are determined.}, number={3}, journal={JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY}, author={Huffman, PR and Greene, GL and Allen, RR and Cianciolo, V and Huerto, RR and Koehler, P and Desai, D and Mahurin, R and Yue, A and Palmquist, GR and et al.}, year={2005}, pages={161–168} }