@article{yoder_cannon_litman_murphy_freeman_litman_2008, title={Evidence for a transposition event in a second NITR gene cluster in zebrafish}, volume={60}, ISSN={0093-7711 1432-1211}, url={http://dx.doi.org/10.1007/s00251-008-0285-3}, DOI={10.1007/s00251-008-0285-3}, abstractNote={Novel immune-type receptors (NITRs) are immunoglobulin-variable (V) domain-containing cell surface proteins that possess characteristic activating/inhibitory signaling motifs and are expressed in hematopoietic cells. NITRs are encoded by multigene families and have been identified in bony fish species. A single gene cluster, which encodes 36 NITRs that can be classified into 12 families, has been mapped to zebrafish chromosome 7. We report herein the presence of a second NITR gene cluster on zebrafish chromosome 14, which is comprised of three genes (nitr13, nitr14a, and nitr14b) representing two additional NITR gene families. Phylogenetic analyses indicate that the V domains encoded by the nitr13 and nitr14 genes are more similar to each other than any other zebrafish NITR suggesting that these genes arose from a tandem gene duplication event. Similar analyses comparing zebrafish Nitr13 and Nitr14 to NITRs from other fish species indicate that the nitr13 and nitr14 genes are phylogenetically related to the catfish IpNITR13 and IpNITR15 genes. Sequence features of the chromosomal region encoding nitr13 suggest that this gene arose via retrotransposition.}, number={5}, journal={Immunogenetics}, publisher={Springer Science and Business Media LLC}, author={Yoder, Jeffrey A. and Cannon, John P. and Litman, Ronda T. and Murphy, Carly and Freeman, Jennifer L. and Litman, Gary W.}, year={2008}, month={Mar}, pages={257–265} } @article{southard_freeman_drum_mirka_2007, title={Ergonomic interventions for the reduction of back and shoulder biomechanical loading when weighing calves}, volume={37}, ISSN={["0169-8141"]}, DOI={10.1016/j.ergon.2006.10.016}, abstractNote={Workers in the agriculture industry have exposure to many of the recognized risk factors for work-related musculoskeletal disorders. The focus of the current project was to develop and evaluate devices designed to reduce exposure to risk factors during the process of weighing beef calves. Ergonomic task analysis of current techniques used to weigh these calves indicated significant stress in the cervicobrachial and lumbar regions. Two ergonomic interventions—the “Handle Attachment” and the “Lever Arm”—were developed to improve the body posture of the lifter and reduce joint loading. A laboratory study and field evaluations were conducted for each of these designs. In the laboratory, muscle activities were quantified for the major muscles of cervicobrachial region, the lumbar region and knee extensor muscle group during the performance of the lifting task while using the two new interventions and the standard method. In the field evaluations, farmworkers used these devices and biomechanical models of the whole body postures were developed to quantify changes in the joint loading when using the interventions. The results show that both intervention techniques reduce the required muscle activity (8–71.6% reduction for the muscles of the cervicobrachial region, 2–43% reduction for the muscles of the lumbar region) and the joint loading (33–100% reduction in shoulder abduction moment and 42–57% reduction in spine compression) as compared to the standard method. Overall, the farmworkers noted that the “Handle Attachment” design is less cumbersome to move and use than the “Lever Arm” design, but laboratory study and field study revealed that the “Lever Arm” design provides the highest reduction in muscle activity and joint loading. Using either intervention while performing this task should decrease the risk to the low back and shoulders. The ergonomic intervention research described in this report documents a reduction in exposure to risk factors for shoulder and low back injury in an at-risk population in the agriculture industry.}, number={2}, journal={INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS}, author={Southard, Stephanie A. and Freeman, Jacklyn H. and Drum, Jonathan E. and Mirka, Gary A.}, year={2007}, month={Feb}, pages={103–110} } @article{jiang_shin_freeman_reid_mirka_2005, title={A study of lifting tasks performed on laterally slanted ground surfaces}, volume={48}, ISSN={["0014-0139"]}, DOI={10.1080/00140130500123761}, abstractNote={Lifting in most industrial environments is performed on a smooth, level ground surface. There are, however, many outdoor work environments (e.g. agriculture and construction) that require manual material handling activities on variable grade ground surfaces. Quantifying the biomechanical response while lifting under these conditions may provide insight into the aetiology of lifting-related injury. The aim of the current study was to quantify the effect of laterally slanted ground surfaces on the biomechanical response. Ten subjects performed both isometric weight-holding tasks and dynamic lifting exertions (both using a 40% of max load) while standing on a platform that was laterally tilted at 0, 10, 20 and 30° from horizontal. As the subject performed the isometric exertions, the electromyographic (EMG) activity of trunk extensors and knee extensors were collected and during the dynamic lifting tasks the whole body kinematics were collected. The whole body kinematics data were used in a dynamic biomechanical model to calculate the time-dependent moment about L5/S1 and the time-dependent lateral forces acting on the body segments. The results of the isometric weight-holding task show a significant (p < 0.05) effect of slant angle on the normalized integrated EMG values in both the left (increase by 26%) and right (increase by 70%) trunk extensors, indicating a significant increase in the protective co-contraction response. The results of the dynamic lifting tasks revealed a consistent reduction in the peak dynamic L5/S1 moment (decreased by 9%) and an increase in the instability producing lateral forces (increased by 111%) with increasing slant angle. These results provide quantitative insight into the response of the human lifter under these adverse lifting conditions.}, number={7}, journal={ERGONOMICS}, author={Jiang, ZL and Shin, G and Freeman, J and Reid, S and Mirka, GA}, year={2005}, month={Jun}, pages={782–795} }