@article{theriot_du_tove_grunden_2010, title={Improving the catalytic activity of hyperthermophilic Pyrococcus prolidases for detoxification of organophosphorus nerve agents over a broad range of temperatures}, volume={87}, ISSN={0175-7598 1432-0614}, url={http://dx.doi.org/10.1007/s00253-010-2614-3}, DOI={10.1007/s00253-010-2614-3}, abstractNote={Prolidase isolated from the hyperthermophilic archaeon Pyrococcus furiosus has potential for application for decontamination of organophosphorus compounds in certain pesticides and chemical warfare agents under harsh conditions. However, current applications that use an enzyme-based cocktail are limited by poor long-term enzyme stability and low reactivity over a broad range of temperatures. To obtain a better enzyme for OP nerve agent decontamination and to investigate structural factors that influence protein thermostability and thermoactivity, randomly mutated P. furiosus prolidases were prepared by using XL1-red-based mutagenesis and error-prone PCR. An Escherichia coli strain JD1 (lambdaDE3) (auxotrophic for proline [DeltaproA] and having deletions in pepQ and pepP dipeptidases with specificity for proline-containing dipeptides) was constructed for screening mutant P. furiosus prolidase expression plasmids. JD1 (lambdaDE3) cells were transformed with mutated prolidase expression plasmids and plated on minimal media supplemented with 50 muM Leu-Pro as the only source of proline. By using this positive selection, Pyrococcus prolidase mutants with improved activity over a broader range of temperatures were isolated. The activities of the mutants over a broad temperature range were measured for both Xaa-Pro dipeptides and OP nerve agents, and the thermoactivity and thermostability of the mutants were determined.}, number={5}, journal={Applied Microbiology and Biotechnology}, publisher={Springer Science and Business Media LLC}, author={Theriot, Casey M. and Du, Xuelian and Tove, Sherry R. and Grunden, Amy M.}, year={2010}, month={Apr}, pages={1715–1726} } @article{du_tove_kast-hutcheson_grunden_2005, title={Characterization of the dinuclear metal center of Pyrococcus furiosus prolidase by analysis of targeted mutants}, volume={579}, ISSN={["1873-3468"]}, DOI={10.1016/j.febslet.2005.09.086}, abstractNote={Prolidases are dipeptidases specific for cleavage of Xaa‐Pro dipeptides. Pyrococcus furiosus prolidase is a homodimer having one Co‐bound dinuclear metal cluster per monomer with one tightly bound Co(II) site and the other loosely bound (K d 0.24 mM). To identify which Co site is tight‐binding and which is loose‐binding, site‐directed mutagenesis was used to modify amino acid residues that participate in binding the Co1 (E‐313 and H‐284), the Co2 site (D‐209) or the bidentate ligand (E‐327). Metal‐content, enzyme activity and CD‐spectra analyses of D209A‐, H284L‐, and E327L‐prolidase mutants show that Co1 is the tight‐binding and Co2 the loose‐binding metal center.}, number={27}, journal={FEBS LETTERS}, author={Du, XL and Tove, S and Kast-Hutcheson, K and Grunden, AM}, year={2005}, month={Nov}, pages={6140–6146} }