@article{robertson_kleinschmidt_white_payne_maragos_holland_2006, title={Heritabilities and correlations of fusarium ear rot resistance and fumonisin contamination resistance in two maize populations}, volume={46}, ISSN={["1435-0653"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-32344440659&partnerID=MN8TOARS}, DOI={10.2135/cropsci2005.0139}, abstractNote={Fusarium verticillioides (Sacc.) Nirenberg (synonym F. moniliforme Sheldon) (teleomorph: Gibberella moniliformis) and F. proliferatum (Matsushima) Nirenberg (teleomorph: G. intermedia) are fungal pathogens of maize (Zea mays L.) that cause ear rot and contaminate grain with fumonisins, a family of mycotoxins that adversely affect animal and human health. The objective of this study was to estimate heritabilities of and genotypic and phenotypic correlations between fumonisin concentration, ear rot, and flowering time in two maize populations. In the (GE440 × FR1064) × FR1064 backcross population, the genotypic and phenotypic correlations between ear rot and fumonisin concentration were 0.96 and 0.40, respectively. Heritability estimated on an entry mean basis was 0.75 for fumonisin concentration and 0.47 for ear rot resistance. In the NC300 × B104 recombinant inbred line population, the genotypic and phenotypic correlations between ear rot and fumonisin concentration were 0.87 and 0.64, respectively. Heritability estimated on an entry mean basis was 0.86 for fumonisin concentration and 0.80 for ear rot resistance. Correlations between fumonisin concentration and silking date were not significant in either population, and correlations between ear rot resistance and silking date were small (less than 0.30) in both populations. Moderate to high heritabilities and strong genetic correlations between ear rot and fumonisin concentration suggest that selection for reduced ear rot should frequently identify lines with reduced fumonisin concentration. Ear rot can be screened visually and so is less costly and less time‐consuming to evaluate than laboratory assays for fumonisin concentration.}, number={1}, journal={CROP SCIENCE}, author={Robertson, LA and Kleinschmidt, CE and White, DG and Payne, GA and Maragos, CM and Holland, JB}, year={2006}, pages={353–361} } @article{balint-kurti_krakowsky_jines_robertson_molnar_goodman_holland_2006, title={Identification of quantitative trait loci for resistance to southern leaf blight and days to anthesis in a maize recombinant inbred line population}, volume={96}, ISSN={["1943-7684"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-33749262148&partnerID=MN8TOARS}, DOI={10.1094/PHYTO-96-1067}, abstractNote={ A recombinant inbred line population derived from a cross between the maize lines NC300 (resistant) and B104 (susceptible) was evaluated for resistance to southern leaf blight (SLB) disease caused by Cochliobolus heterostrophus race O and for days to anthesis in four environments (Clayton, NC, and Tifton, GA, in both 2004 and 2005). Entry mean and average genetic correlations between disease ratings in different environments were high (0.78 to 0.89 and 0.9, respectively) and the overall entry mean heritability for SLB resistance was 0.89. When weighted mean disease ratings were fitted to a model using multiple interval mapping, seven potential quantitative trait loci (QTL) were identified, the two strongest being on chromosomes 3 (bin 3.04) and 9 (bin 9.03–9.04). These QTL explained a combined 80% of the phenotypic variation for SLB resistance. Some time-point-specific SLB resistance QTL were also identified. There was no significant correlation between disease resistance and days to anthesis. Six putative QTL for time to anthesis were identified, none of which coincided with any SLB resistance QTL. }, number={10}, journal={PHYTOPATHOLOGY}, author={Balint-Kurti, P. J. and Krakowsky, M. D. and Jines, M. P. and Robertson, L. A. and Molnar, T. L. and Goodman, M. M. and Holland, J. B.}, year={2006}, month={Oct}, pages={1067–1071} }