Works (2)

Updated: July 5th, 2023 15:56

2013 journal article

Neural development is dependent on the function of specificity protein 2 in cell cycle progression

DEVELOPMENT, 140(3), 552–561.

author keywords: Neurogenesis; Neural stem cells; Neural progenitors; Sp2; Cell cycle; M phase; Mouse
MeSH headings : Animals; Brain / cytology; Brain / embryology; Brain / metabolism; Cell Count; Cell Cycle; Cell Proliferation; Crosses, Genetic; Embryo Implantation; Embryo, Mammalian / cytology; Embryo, Mammalian / metabolism; Embryonic Stem Cells / cytology; Embryonic Stem Cells / metabolism; Eye Proteins / genetics; Eye Proteins / metabolism; Female; Genetic Markers; Homeodomain Proteins / genetics; Homeodomain Proteins / metabolism; Homologous Recombination; Intermediate Filament Proteins / genetics; Intermediate Filament Proteins / metabolism; Mice; Mice, Inbred C57BL; Mice, Knockout; Nerve Tissue Proteins / genetics; Nerve Tissue Proteins / metabolism; Nestin; Neural Stem Cells / cytology; Neural Stem Cells / metabolism; Neurogenesis; Neurons / cytology; Neurons / metabolism; PAX6 Transcription Factor; Paired Box Transcription Factors / genetics; Paired Box Transcription Factors / metabolism; Repressor Proteins / genetics; Repressor Proteins / metabolism; Sp2 Transcription Factor / genetics; Sp2 Transcription Factor / metabolism; Stem Cell Niche; Transplantation Chimera / embryology; Transplantation Chimera / metabolism
TL;DR: It is demonstrated that neural stem cells and intermediate neural progenitor cells (NPCs) employ a zinc-finger transcription factor specificity protein 2 (Sp2) as a cell cycle regulator in two temporally and spatially distinct progenitors domains. (via Semantic Scholar)
Source: Web Of Science
Added: August 6, 2018

2006 journal article

Sp2 localizes to subnuclear foci associated with the nuclear matrix


MeSH headings : Amino Acid Sequence; Animals; COS Cells; Chlorocebus aethiops; Humans; Interphase; Molecular Sequence Data; Nuclear Matrix / chemistry; Nuclear Matrix / metabolism; Protein Array Analysis; Protein Structure, Tertiary; Sequence Deletion; Sp Transcription Factors / analysis; Sp Transcription Factors / metabolism; Sp2 Transcription Factor / analysis; Sp2 Transcription Factor / genetics; Sp2 Transcription Factor / metabolism; Transfection; Zinc Fingers / genetics
TL;DR: It is concluded that Sp2 preferentially associates with the nuclear matrix and speculate that this subcellular localization plays an important role in the regulation of Sp2 function. (via Semantic Scholar)
Source: Web Of Science
Added: August 6, 2018

Citation Index includes data from a number of different sources. If you have questions about the sources of data in the Citation Index or need a set of data which is free to re-distribute, please contact us.

Certain data included herein are derived from the Web of Science© and InCites© (2024) of Clarivate Analytics. All rights reserved. You may not copy or re-distribute this material in whole or in part without the prior written consent of Clarivate Analytics.