@article{mudiganti_hernandez_brown_2010, title={Insect response to alphavirus infection-Establishment of alphavirus persistence in insect cells involves inhibition of viral polyprotein cleavage}, volume={150}, ISSN={["1872-7492"]}, DOI={10.1016/j.virusres.2010.02.016}, abstractNote={Alphavirus persistence in the insect vector is an essential element in the vector–host transmission cycle of the virus and provides a model to study the biochemical and molecular basis for virus–vector coexistence. The prototype alphavirus Sindbis (SV) establishes persistent infections in invertebrate cell cultures which are characterized by low levels of virus production. We hypothesized that antiviral factors may be involved in decreasing the virus levels as virus persistence is established in invertebrate cells. Transcription profiles in Drosophila S2 cells at 5 days post-infection with SV identified families of gene products that code for factors that can explain previous observations seen in insect cells infected with alphaviruses. Genomic array analysis identified up-regulation of gene products involved in intracellular membrane vesicle formation, cell growth rate changes and immune-related functions in S2 cells infected with SV. Transcripts coding for factors involved in different aspects of the Notch signaling pathway had increased in expression. Increased expression of ankyrin, plap, syx13, unc-13, csp, rab1 and rab8 may aid in formation of virus containing vesicles and in intracellular transport of viral structural proteins. Possible functions of these gene products and relevant hypotheses are discussed. We confirmed the up-regulation of a wide-spectrum protease inhibitor, Thiol-ester containing Protein (TEP) II. We report inhibition of the viral polyprotein cleavage at 5 days post-infection (dpi) and after superinfection of SV-infected cells at 5 dpi. We propose that inefficient cleavage of the polyprotein may, at least in part, lead to reduced levels of virus seen as persistence is established.}, number={1-2}, journal={VIRUS RESEARCH}, author={Mudiganti, Usharani and Hernandez, Raquel and Brown, Dennis T.}, year={2010}, month={Jun}, pages={73–84} } @article{heldt_hernandez_mudiganti_gurgel_brown_carbonell_2006, title={A colorimetric assay for viral agents that produce cytopathic effects}, volume={135}, DOI={10.1016/j.j.viromet.2006.01.022}, number={1}, journal={Journal of Virological Methods}, author={Heldt, C. L. and Hernandez, R. and Mudiganti, U. and Gurgel, P. V. and Brown, D. T. and Carbonell, R. G.}, year={2006}, pages={56–65} } @article{mudiganti_hernandez_ferreira_brown_2006, title={Sindbis virus infection of two model insect cell systems - A comparative study}, volume={122}, DOI={10.1016/j.virusres.2006.06.007}, abstractNote={Sindbis, the prototype of the Alphaviruses causes mosquito-borne diseases in mammals and replicates in a wide variety of vertebrate and invertebrate cell cultures. This characteristic can be exploited to use the vast array of Drosophila genetic information available for investigations of the interaction of Sindbis virus with an alternate invertebrate host. For this purpose, a comparative study of Sindbis virus infection of Schnieder-2 Drosophila (S2) cells to cells of the mosquito Aedes albopictus (clone U4.4) was undertaken. After infection, vertebrate cells die within 24–48 h, while invertebrate cell cultures survive an acute phase of infection and become persistently infected. In this study, infection of a model Drosophila system, S2 cells, was compared to U4.4 cells. Virus production, the time course of the establishment of persistence and changes in growth properties of the S2 cells upon infection, were studied in comparison to those of the U4.4 cells. S2 cells survived acute Sindbis infection without any significant cytopathology and continued to produce low levels of virus characteristic of persistently infected cells. S2 cells produced 10 PFU/cell on day 1 post-infection, which falls to 2 PFU/cell on day 2. This result is in contrast to U4.4 cells, which produce peak virus titer on day 2 post-infection and establish persistence by day 5. Onset of the persistent phase of infection of either U4.4 or S2 cells did not result in any change in morphology or growth characteristics. This study establishes S2 cells as an additional invertebrate model system to study the interactions of an invertebrate host with Sindbis virus.}, number={1-2}, journal={Virus Research}, author={Mudiganti, U. and Hernandez, R. and Ferreira, D. and Brown, D. T.}, year={2006}, pages={28–34} }