@article{holder_yuter_sobel_aiyyer_2008, title={The mesoscale characteristics of tropical oceanic precipitation during Kelvin and mixed Rossby-gravity wave events}, volume={136}, ISSN={["1520-0493"]}, DOI={10.1175/2008MWR2350.1}, abstractNote={Abstract Precipitation structures within Kelvin and mixed Rossby–gravity (MRG) wave troughs near Kwajalein Atoll during the 1999–2003 rainy seasons are analyzed using three-dimensional ground-based radar data and upper-air sounding data. Consistent with previous work, wave troughs are preferred locations for precipitation and typically yield 1.3 times more rain area compared to the overall rainy season climatology. Although the contiguous areas of cold cloudiness associated with tropical wave troughs are large and long lived, the underlying precipitation structure is most frequently small, isolated convection from mixed-phase clouds. This mismatch in instantaneous cold cloudiness area versus radar-observed precipitation area indicates differences in the rate and nature of evolution between the mesoscale anvil cloud and the underlying precipitating portion of the cloud. Mesoscale convective systems (MCSs) were identified during portions of 32 of the 39 wave trough events examined. Convective cells are freq...}, number={9}, journal={MONTHLY WEATHER REVIEW}, author={Holder, Christopher T. and Yuter, Sandra E. and Sobel, Adam H. and Aiyyer, Anantha R.}, year={2008}, month={Sep}, pages={3446–3464} } @article{holder_boyles_robinson_raman_fishel_2006, title={Calculating a daily normal temperature range that reflects daily temperature variability}, volume={87}, ISSN={["1520-0477"]}, DOI={10.1175/BAMS-87-6-769}, abstractNote={Normal temperatures, which are calculated by the National Climatic Data Center for locations across the country, are quality-controlled, smoothed 30-yr-average temperatures. They are used in many facets of media, industry, and meteorology, and a given day's normal maximum and minimum temperatures are often used synonymously with what the observed temperature extremes “should be.” However, allowing some leeway to account for natural daily and seasonal variations can more accurately reflect the ranges of temperature that we can expect on a particular day—a “normal range.” Providing such a range, especially to the public, presents a more accurate perspective on what the temperature “usually” is on any particular day of the year. One way of doing this is presented in this study for several locations across North Carolina. The results yield expected higher variances in the cooler months and seem to well represent the varied weather that locations in North Carolina tend to experience. Day-to-day variations in t...}, number={6}, journal={BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY}, author={Holder, Christopher and Boyles, Ryan and Robinson, Peter and Raman, Sethli and Fishel, Greg}, year={2006}, month={Jun}, pages={769-+} } @article{holder_boyles_syed_niyogi_raman_2006, title={Comparison of collocated automated (NCECONet) and manual (COOP) climate observations in North Carolina}, volume={23}, ISSN={["0739-0572"]}, DOI={10.1175/jtech1873.1}, abstractNote={The National Weather Service’s Cooperative Observer Program (COOP) is a valuable climate data resource that provides manually observed information on temperature and precipitation across the nation. These data are part of the climate dataset and continue to be used in evaluating weather and climate models. Increasingly, weather and climate information is also available from automated weather stations. A comparison between these two observing methods is performed in North Carolina, where 13 of these stations are collocated. Results indicate that, without correcting the data for differing observation times, daily temperature observations are generally in good agreement (0.96 Pearson product–moment correlation for minimum temperature, 0.89 for maximum temperature). Daily rainfall values recorded by the two different systems correlate poorly (0.44), but the correlations are improved (to 0.91) when corrections are made for the differences in observation times between the COOP and automated stations. Daily rainfall correlations especially improve with rainfall amounts less than 50 mm day 1 . Temperature and rainfall have high correlation (nearly 1.00 for maximum and minimum temperatures, 0.97 for rainfall) when monthly averages are used. Differences of the data between the two platforms consistently indicate that COOP instruments may be recording warmer maximum temperatures, cooler minimum temperatures, and larger amounts of rainfall, especially with higher rainfall rates. Root-mean-square errors are reduced by up to 71% with the day-shift and hourly corrections. This study shows that COOP and automated data [such as from the North Carolina Environment and Climate Observing Network (NCECONet)] can, with simple corrections, be used in conjunction for various climate analysis applications such as climate change and site-to-site comparisons. This allows a higher spatial density of data and a larger density of environmental parameters, thus potentially improving the accuracy of the data that are relayed to the public and used in climate studies.}, number={5}, journal={JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY}, author={Holder, C and Boyles, R and Syed, A and Niyogi, D and Raman, S}, year={2006}, month={May}, pages={671–682} }