@article{eller_robertson-hoyt_payne_holland_2008, title={Grain yield and fusarium ear rot of maize hybrids developed from lines with varying levels of resistance}, volume={53}, number={3-4}, journal={Maydica}, author={Eller, M. S. and Robertson-Hoyt, L. A. and Payne, G. A. and Holland, J. B.}, year={2008}, pages={231–237} } @article{jines_balint-kurti_robertson-hoyt_molnar_holland_goodman_2007, title={Mapping resistance to Southern rust in a tropical by temperate maize recombinant inbred topcross population}, volume={114}, ISSN={["1432-2242"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-33846813838&partnerID=MN8TOARS}, DOI={10.1007/s00122-006-0466-0}, number={4}, journal={THEORETICAL AND APPLIED GENETICS}, author={Jines, M. P. and Balint-Kurti, P. and Robertson-Hoyt, L. A. and Molnar, T. and Holland, J. B. and Goodman, M. M.}, year={2007}, month={Feb}, pages={659–667} } @article{robertson-hoyt_betran_payne_white_isakeit_maragos_molnar_holland_2007, title={Relationships among resistances to Fusarium and Aspergillus ear rots and contamination by fumonisin and aflatoxin in maize}, volume={97}, ISSN={["1943-7684"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-33847337945&partnerID=MN8TOARS}, DOI={10.1094/PHYTO-97-3-0311}, abstractNote={ABSTRACT Fusarium verticillioides, F. proliferatum, and Aspergillus flavus cause ear rots of maize and contaminate the grain with mycotoxins (fumonisin or aflatoxin). The objective of this study was to investigate the relationships between resistance to Fusarium and Aspergillus ear rots and fumonisin and aflatoxin contamination. Based on a previous study of 143 recombinant inbred lines from the cross NC300 x B104, 24 lines with the highest and 24 lines with the lowest mean fumonisin concentration were selected for further evaluation. Paired plots of each line were inoculated with F. verticillioides and F. proliferatum or with A. flavus in replicated trials in 2004 and 2005 in Clayton, NC, and College Station, TX. The low-fumonisin group had significantly lower levels of fumonisin, aflatoxin, and Fusarium and Aspergillus ear rots. Across year-location environments, all four traits were significantly correlated; the genotypic correlation (r(G)) ranged from r(G) = 0.88 (aflatoxin and Aspergillus ear rot) to r(G) = 0.99 (Fusarium and Aspergillus ear rots). Quantitative trait loci (QTLs) were identified and their effects estimated. Two QTLs affected both toxin concentrations, one QTL affected both ear rots, and one QTL affected Aspergillus and Fusarium rots and fumonisin. These results suggest that at least some of the genes involved in resistance to ear rots and mycotoxin contamination are identical or genetically linked.}, number={3}, journal={PHYTOPATHOLOGY}, author={Robertson-Hoyt, Leilani A. and Betran, Javier and Payne, Gary A. and White, Don G. and Isakeit, Thomas and Maragos, Chris M. and Molnar, Terence L. and Holland, James B.}, year={2007}, month={Mar}, pages={311–317} } @article{robertson-hoyt_kleinschmidt_white_payne_maragos_holland_2007, title={Relationships of resistance to Fusarium ear rot and fumonisin contamination with agronomic performance of maize}, volume={47}, ISSN={["1435-0653"]}, url={http://www.scopus.com/inward/record.url?eid=2-s2.0-35348855713&partnerID=MN8TOARS}, DOI={10.2135/cropsci2006.10.0676}, abstractNote={Resistance to Fusarium ear rot [caused by Fusarium verticillioides (Sacc.) Nirenberg (synonym F. moniliforme Sheldon) (teleomorph: Gibberella moniliformis) and F. proliferatum (Matsushima) Nirenberg (teleomorph: G. intermedia)] and fumonisin contamination is heritable and controlled by at least 11 gene regions in a maize (Zea mays L.) population created by backcrossing the highly resistant donor line, GE440, to the susceptible but commercially successful recurrent parent line, FR1064. The relationship between resistances to Fusarium ear rot and fumonisin contamination and agronomic performance has not been reported. Therefore, the objective of this study was to examine the relationship between disease resistance and agronomic utility in this population by measuring resistances to Fusarium ear rot and fumonisin contamination in BC 1 F 1:2 lines, and yield and agronomic performance in topcrosses of these lines. Fumonisin contamination was not correlated with yield, but two fumonisin quantitative trait loci (QTL) mapped to similar positions as yield QTL. Fusarium ear rot had a small positive correlation with topcross yield (r = 0.29), but QTL for the two traits mapped to distinct genomic positions. Similar results for other traits indicate that QTL can contribute in opposite directions to the overall genetic correlations between traits and that some trait correlations arise in the absence of detectable QTL effects on both traits. In general, no strong relationships were observed between disease resistance traits and agronomic traits, thus selection for increased resistance should not unduly affect agronomic performance.}, number={5}, journal={CROP SCIENCE}, author={Robertson-Hoyt, Leilani A. and Kleinschmidt, Craig E. and White, Don G. and Payne, Gary A. and Maragos, Chris M. and Holland, James B.}, year={2007}, pages={1770–1778} } @article{robertson-hoyt_jines_balint-kurti_kleinschmidt_white_payne_maragos_molnar_holland_2006, title={QTL mapping for fusarium ear rot and fumonisin contamination resistance in two maize populations}, volume={46}, DOI={10.2135/cropsci205.12-0450}, number={4}, journal={Crop Science}, author={Robertson-Hoyt, L. A. and Jines, M. P. and Balint-Kurti, Peter and Kleinschmidt, C. E. and White, D. G. and Payne, G. A. and Maragos, C. M. and Molnar, T. L. and Holland, J. B.}, year={2006}, pages={1734–1743} }