@article{geng_kiker_ordon_kuznetsov_zeng_roberts_2007, title={Combined numerical and experimental investigation of a hobby-scale pulsejet}, volume={23}, ISSN={["1533-3876"]}, DOI={10.2514/1.18593}, abstractNote={The pulsejet, due to its simplicity, may be an ideal micro propulsion system, but has received very little attention since the mid 1950’s. Here, modern computational and experimental tools are used to investigate the operation of a hobby scale (50 cm overall length) pulsejet. Gas dynamics, acoustics and chemical kinetics are all involved and are studied to gain an understanding of the various physical phenomena affecting pulsejet operation, scaleability and efficiency. A Bailey Machining Service (BMS) hobby pulsejet is instrumented to obtain pressure, temperature, thrust, and frequency. CH * chemiluminescence is utilized to determine combustion time and high speed imaging of the reed valve operation is undertaken to determine the valve duty cycle. Laser Doppler Velocimetry (LDV) has been used to measure the instantaneous exhaust velocity in these unsteady combustion devices. Numerical simulations are performed utilizing CFX to model the 3-D compressible vicious flow in the pulsejet using the integrated Westbrook-Dryer single step combustion model. The turbulent flow and reaction rate are modeled with the ke model and the Eddy Dissipation Model (EDM), respectively. Simulation results provide physical insight into the pulsejet cycle; comparisons with experimental data obtained in this research are carried out. The traditional view of a pulsejet as a 1/4 wave tube operating on the Humphrey cycle is modified with to account for valve operation and finite chemical kinetics.}, number={1}, journal={JOURNAL OF PROPULSION AND POWER}, author={Geng, T. and Kiker, A., Jr. and Ordon, R. and Kuznetsov, A. V. and Zeng, T. F. and Roberts, W. L.}, year={2007}, pages={186–193} } @article{geng_zheng_kiker_kuznetsov_roberts_2007, title={Experimental and numerical investigation of an 8-cm valveless pulsejet}, volume={31}, ISSN={["0894-1777"]}, DOI={10.1016/j.expthermflusci.2006.06.005}, abstractNote={This paper investigates the performance of a small scale pulsejet whose overall length is approximately 8 cm, the smallest pulsejet ever reported to the author’s knowledge. Gas dynamics, acoustics and chemical kinetics were modeled to gain an understanding of various physical phenomena affecting pulsejet operation, scalability, and efficiency. Numerical simulations were performed utilizing CFX to model 3-D compressible vicious flow in the pulsejet using the integrated Westbrook–Dryer single step combustion model. The simulation results were validated with experimental data and provide physical insight into the pulsejet operation. The pulsejet was run in valveless mode on hydrogen fuel with either a forward-facing inlet or a pair of rearward-facing inlets. Pressure, temperature, thrust, and frequency were measured as a function of valveless inlet and exit lengths and different geometries. As expected, the rearward-facing inlet produced considerably more net thrust, although still not very efficient, with a TSFC of 0.02 kg/N-h. The operating frequency was found to scale with inlet length to the negative 0.22 power, in addition to the inverse of the overall length for valved pulsejet.}, number={7}, journal={EXPERIMENTAL THERMAL AND FLUID SCIENCE}, author={Geng, T. and Zheng, F. and Kiker, A. P. and Kuznetsov, An. and Roberts, W. L.}, year={2007}, month={Jul}, pages={641–647} }