@article{brinley_truong_coronel_simunovic_sandeep_2008, title={Dielectric properties of sweet potato purees at 915 MHZ as affected by temperature and chemical composition}, volume={11}, ISSN={["1532-2386"]}, DOI={10.1080/10942910701284291}, abstractNote={A process for rapid sterilization and aseptic packaging of sweet potato puree using a continuous flow microwave system operating at 915 MHz has been successfully developed. In microwave processing, dielectric properties have a major role in determining the interaction between purees and the electromagnetic energy. The objective of this research was to determine how dielectric properties are affected by temperature and chemical composition of purees derived from thirteen sweet potato cultivars with varying flesh colors. Results indicated that temperature, moisture, sugar and starch content had a pronounced effect (p < 0.001) on dielectric properties measured from 15°C to 145°C at 915 MHz. Dielectric constant decreased with increasing temperature, while dielectric loss factor increased quadratically. Power penetration depth of all cultivars decreased with increasing temperature. Predictive equations were developed for dielectric constant (R2 = 0.82) and dielectric loss factor (R2 = 0.90) as a function of temperature, moisture, sugar, and starch. The predictive equations would be useful in determining the dielectric properties of sweet potato purees for the microwave processing technology.}, number={1}, journal={INTERNATIONAL JOURNAL OF FOOD PROPERTIES}, author={Brinley, T. A. and Truong, V. D. and Coronel, P. and Simunovic, J. and Sandeep, K. P.}, year={2008}, pages={158–172} } @article{brinley_stam_truong_coronel_kumar_simunovic_sandeep_cartwright_swartzel_jaykus_et al._2007, title={Feasibility of utilizing bioindicators for testing microbial inactivation in sweetpotato purees processed with a continuous-flow microwave system}, volume={72}, ISSN={["0022-1147"]}, DOI={10.1111/j.1750-3841.2007.00371.x}, abstractNote={ABSTRACT:  Continuous‐flow microwave heating has potential in aseptic processing of various food products, including purees from sweetpotatoes and other vegetables. Establishing the feasibility of a new processing technology for achieving commercial sterility requires evaluating microbial inactivation. This study aimed to assess the feasibility of using commercially available plastic pouches of bioindicators containing spores of Geobacillius stearothermophilus ATCC 7953 and Bacillus subtilis ATCC 35021 for evaluating the degree of microbial inactivation achieved in vegetable purees processed in a continuous‐flow microwave heating unit. Sweetpotato puree seeded with the bioindicators was subjected to 3 levels of processing based on the fastest particles: undertarget process (F0 approximately 0.65), target process (F0 approximately 2.8), and overtarget process (F0 approximately 10.10). After initial experiments, we found it was necessary to engineer a setup with 2 removable tubes connected to the continuous‐flow microwave system to facilitate the injection of indicators into the unit without interrupting the puree flow. Using this approach, 60% of the indicators injected into the system could be recovered postprocess. Spore survival after processing, as evaluated by use of growth indicator dyes and standard plating methods, verified inactivation of the spores in sweetpotato puree. The log reduction results for B. subtilis were equivalent to the predesigned degrees of sterilization (F0). This study presents the first report suggesting that bioindicators such as the flexible, food‐grade plastic pouches can be used for microbial validation of commercial sterilization in aseptic processing of foods using a continuous‐flow microwave system.}, number={5}, journal={JOURNAL OF FOOD SCIENCE}, author={Brinley, T. A. and Stam, C. N. and Truong, V. D. and Coronel, P. and Kumar, P. and Simunovic, J. and Sandeep, K. P. and Cartwright, G. D. and Swartzel, K. R. and Jaykus, L. A. and et al.}, year={2007}, pages={E235–E242} }