@article{mohamadzadeh_pfeiler_brown_zadeh_gramarossa_managlia_bere_sarraj_khan_pakanati_et al._2011, title={Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid}, volume={108}, ISSN={["0027-8424"]}, DOI={10.1073/pnas.1005066107}, abstractNote={Imbalance in the regulatory immune mechanisms that control intestinal cellular and bacterial homeostasis may lead to induction of the detrimental inflammatory signals characterized in humans as inflammatory bowel disease. Induction of proinflammatory cytokines (i.e., IL-12) induced by dendritic cells (DCs) expressing pattern recognition receptors may skew naive T cells to T helper 1 polarization, which is strongly implicated in mucosal autoimmunity. Recent studies show the ability of probiotic microbes to treat and prevent numerous intestinal disorders, includingClostridium difficile-induced colitis. To study the molecular mechanisms involved in the induction and repression of intestinal inflammation, the phosphoglycerol transferase gene that plays a key role in lipoteichoic acid (LTA) biosynthesis inLactobacillus acidophilusNCFM (NCK56) was deleted. The data show that theL. acidophilusLTA-negative in LTA (NCK2025) not only down-regulated IL-12 and TNFα but also significantly enhanced IL-10 in DCs and controlled the regulation of costimulatory DC functions, resulting in their inability to induce CD4+T-cell activation. Moreover, treatment of mice with NCK2025 compared with NCK56 significantly mitigated dextran sulfate sodium and CD4+CD45RBhighT cell-induced colitis and effectively ameliorated dextran sulfate sodium-established colitis through a mechanism that involves IL-10 and CD4+FoxP3+T regulatory cells to dampen exaggerated mucosal inflammation. Directed alteration of cell surface components ofL. acidophilusNCFM establishes a potential strategy for the treatment of inflammatory intestinal disorders.}, journal={PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA}, author={Mohamadzadeh, Mansour and Pfeiler, Erika A. and Brown, Jeffrey B. and Zadeh, Mojgan and Gramarossa, Matthew and Managlia, Elizabeth and Bere, Praveen and Sarraj, Bara and Khan, Mohammad W. and Pakanati, Krishna Chaitanya and et al.}, year={2011}, month={Mar}, pages={4623–4630} } @article{pfeiler_klaenhammer_2009, title={Role of Transporter Proteins in Bile Tolerance of Lactobacillus acidophilus}, volume={75}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.00495-09}, abstractNote={ABSTRACT}, number={18}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, author={Pfeiler, Erika A. and Klaenhammer, Todd R.}, year={2009}, month={Sep}, pages={6013–6016} } @article{azcarate-peril_altermann_goh_tallon_sanozky-dawes_pfeiler_o'flaherty_buck_dobson_duong_et al._2008, title={Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism}, volume={74}, ISSN={["1098-5336"]}, DOI={10.1128/AEM.00054-08}, abstractNote={ABSTRACT}, number={15}, journal={APPLIED AND ENVIRONMENTAL MICROBIOLOGY}, publisher={American Society for Microbiology}, author={Azcarate-Peril, M. Andrea and Altermann, Eric and Goh, Yong Jun and Tallon, Richard and Sanozky-Dawes, Rosemary B. and Pfeiler, Erika A. and O'Flaherty, Sarah and Buck, B. Logan and Dobson, Alleson and Duong, Tri and et al.}, year={2008}, month={Aug}, pages={4610–4625} } @article{klaenhammer_altermann_pfeiler_buck_goh_o'flaherty_barrangou_duong_2008, title={Functional genomics of probiotic Lactobacilli}, volume={42}, ISSN={["0192-0790"]}, DOI={10.1097/MCG.0b013e31817da140}, abstractNote={Lactic acid bacteria (LAB) have been used in fermentation processes for millennia. Recent applications such as the use of living cultures as probiotics have significantly increased industrial interest. Related bacterial strains can differ significantly in their genotype and phenotype, and features from one bacterial strain or species cannot necessarily be applied to a related one. These strain or family-specific differences often represent unique and applicable traits. Since 2002, the complete genomes of 13 probiotic LABs have been published. The presentation will discuss these genomes and highlight probiotic traits that are predicted, or functionally linked to genetic content. We have conducted a comparative genomic analysis of 4 completely sequenced Lactobacillus strains versus 25 lactic acid bacterial genomes present in the public database at thetime of analysis. Using Differential Blast Analysis, each genome is compared with 3 other Lactobacillus and 25 other LAB genomes. Differential Blast Analysis highlighted strain-specific genes that were not represented in any other LAB used in this analysis and also identified group-specific genes shared within lactobacilli. Lactobacillus-specific genes include mucus-binding proteins involved in cell-adhesion and several transport systems for carbohydrates and amino acids. Comparative genomic analysis has identified gene targets in Lactobacillus acidophilus for functional analysis, including adhesion to mucin and intestinal epithelial cells, acid tolerance, bile tolerance, and quorum sensing. Whole genome transcriptional profiling of L. acidophilus, and isogenic mutants thereof, has revealed the impact of varying conditions (pH, bile, carbohydrates) and food matrices on the expression of genes important to probiotic-linked mechanisms.}, number={8}, journal={JOURNAL OF CLINICAL GASTROENTEROLOGY}, publisher={Ovid Technologies (Wolters Kluwer Health)}, author={Klaenhammer, Todd R. and Altermann, Eric and Pfeiler, Erika and Buck, Brock Logan and Goh, Yong-Jun and O'Flaherty, Sarah and Barrangou, Rodolphe and Duong, Tri}, year={2008}, month={Sep}, pages={S160–S162} } @article{pfeiler_azcarate-peril_klaenhammer_2007, title={Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus}, volume={189}, ISSN={["1098-5530"]}, DOI={10.1128/JB.00337-07}, abstractNote={ABSTRACT}, number={13}, journal={JOURNAL OF BACTERIOLOGY}, author={Pfeiler, Erika A. and Azcarate-Peril, M. Andrea and Klaenhammer, Todd R.}, year={2007}, month={Jul}, pages={4624–4634} } @misc{pfeiler_klaenhammer_2007, title={The genomics of lactic acid bacteria}, volume={15}, ISSN={["1878-4380"]}, DOI={10.1016/j.tim.2007.09.010}, abstractNote={The lactic acid bacteria (LAB) are one of the most industrially important groups of bacteria. These organisms are used in a variety of ways, including food production, health improvement and production of macromolecules, enzymes and metabolites. The genome sequencing of 20 LAB provides an expanded view of their genetic and metabolic capacities and enables researchers to perform functional and comparative genomic studies. This review highlights some of the findings from these analyses in the context of the numerous roles the LAB play.}, number={12}, journal={TRENDS IN MICROBIOLOGY}, author={Pfeiler, Erika A. and Klaenhammer, Todd R.}, year={2007}, month={Dec}, pages={546–553} }