@article{jacquet_patel_iyengar_liang_therit_salinas-mondragon_lai_olsen_anton_ghashghaei_2009, title={Analysis of neuronal proliferation, migration and differentiation in the postnatal brain using equine infectious anemia virus-based lentiviral vectors}, volume={16}, ISSN={["1476-5462"]}, DOI={10.1038/gt.2009.58}, abstractNote={Ongoing neurogenesis in discrete sectors of the adult central nervous system depends on the mitotic activity of an elusive population of adult stem cells. The existence of adult neural stem cells provides an alternative approach to transplantation of embryonic stem cells in cell-based therapies. Owing to the limited intrinsic fate of adult stem cells and inhibitory nature of the adult brain for neurogenesis, accommodation for circuit replacement in the brain will require genetic and epigenetic manipulation. Here, we show that a replication-incompetent Equine Infectious Anemia Virus (EIAV) is highly suitable for stable and persistent gene transfer to adult neural stem cells. The transduced regions were free of long-lasting neuroimmune responses to EIAV. Transduction in the subventricular zone was specific to the stem cell niche, but spared the progeny of adult neural stem cells that includes transit amplifying progenitors (TAPs) and migrating neuroblasts. With time, EIAV-transduced stem cells passed on the transgene to TAPs and migrating neuroblasts, which ultimately differentiated into neurons in the olfactory bulbs. We show that EIAV is highly suitable for discovery and assessment of mechanisms that regulate proliferation, migration and differentiation in the postnatal brain.}, number={8}, journal={GENE THERAPY}, author={Jacquet, B. V. and Patel, M. and Iyengar, M. and Liang, H. and Therit, B. and Salinas-Mondragon, R. and Lai, C. and Olsen, J. C. and Anton, E. S. and Ghashghaei, H. T.}, year={2009}, month={Aug}, pages={1021–1033} } @article{sanders_pate_mahaffey_2008, title={The drosophila gap gene giant has an anterior segment identity function mediated through disconnected and teashirt}, volume={179}, ISSN={["1943-2631"]}, DOI={10.1534/genetics.107.084988}, abstractNote={Abstract The C2H2 zinc-finger-containing transcription factors encoded by the disconnected (disco) and teashirt (tsh) genes contribute to the regionalization of the Drosophila embryo by establishing fields in which specific Homeotic complex (Hom-C) proteins can function. In Drosophila embryos, disco and the paralogous disco-related (disco-r) are expressed throughout most of the epidermis of the head segments, but only in small patches in the trunk segments. Conversely, tsh is expressed extensively in the trunk segments, with little or no accumulation in the head segments. Little is known about the regulation of these genes; for example, what limits their expression to these domains? Here, we report the regulatory effects of gap genes on the spatial expression of disco, disco-r, and tsh during Drosophila embryogenesis. The data shed new light on how mutations in giant (gt) affect patterning within the anterior gt domain, demonstrating homeotic function in this domain. However, the homeosis does not occur through altered expression of the Hom-C genes but through changes in the regulation of disco and tsh.}, number={1}, journal={GENETICS}, author={Sanders, Lisa R. and Pate, Mukund and Mahaffey, James W.}, year={2008}, month={May}, pages={441–453} } @article{patel_farzana_robertson_hutchinson_grubbs_shepherd_mahaffey_2007, title={The appendage role of insect disco genes and possible implications on the evolution of the maggot larval form}, volume={309}, ISSN={["0012-1606"]}, DOI={10.1016/j.ydbio.2007.06.017}, abstractNote={Though initially identified as necessary for neural migration, Disconnected and its partially redundant paralog, Disco-related, are required for proper head segment identity during Drosophila embryogenesis. Here, we present evidence that these genes are also required for proper ventral appendage development during development of the adult fly, where they specify medial to distal appendage development. Cells lacking the disco genes cannot contribute to the medial and distal portions of ventral appendages. Further, ectopic disco transforms dorsal appendages toward ventral fates; in wing discs, the medial and distal leg development pathways are activated. Interestingly, this appendage role is conserved in the red flour beetle, Tribolium (where legs develop during embryogenesis), yet in the beetle we found no evidence for a head segmentation role. The lack of an embryonic head specification role in Tribolium could be interpreted as a loss of the head segmentation function in Tribolium or gain of this function during evolution of flies. However, we suggest an alternative explanation. We propose that the disco genes always function as appendage factors, but their appendage nature is masked during Drosophila embryogenesis due to the reduction of limb fields in the maggot style Drosophila larva.}, number={1}, journal={DEVELOPMENTAL BIOLOGY}, author={Patel, Mukund and Farzana, Laila and Robertson, Lisa K. and Hutchinson, Jennifer and Grubbs, Nathaniel and Shepherd, Mark N. and Mahaffey, James W.}, year={2007}, month={Sep}, pages={56–69} }