@misc{line_osmond_coffey_mclaughlin_jennings_gale_spooner_1997, title={Nonpoint sources}, volume={69}, ISSN={["1554-7531"]}, DOI={10.2175/106143097X135055}, abstractNote={Micellar Solubilization of Polynuclear Aromatic Hydrocarbons in Coal Tar-Contaminated Soils. Environ. Sci. Technol., 30,2104. Yiacoumi, S., and Rao, A.V. (1996) Organic Solute Uptake from Aqueous Solutions by Soil: A New Diffusion Model. Water Resour. Res., 32, 431. Yonezawa, e.; Tanaka, T.; and Kamioka, H. (1996) Water-Rock Reactions During Gamma-Ray Irradiation. Appl. Geochem., 11, 461. Yoon, J.-H., and Shoemaker, e.A. (1996) Applications of SALQR and Evolutionary Algorithms to Optimization of Groundwater Bioremediation. Computat. Methods Water Resour. XI, Cancun, Mexico, Computational Mechanics Publications, Southampton, U.K., 1,383. You, e.N., and Liu, J.e. (1996) Desorptive Behavior of Chlorophenols in Contaminated Soils. Water Sci. Technol. (G.B.), 33, 263. You, G.R.; Sayles, G.D.; Kupferle, M.J.; Kim, I.S.; and Bishop, P.L. (1996) Anaerobic DDT Biotransformation: Enhancement by Application of Surfactants and Low Oxidation Reduction Potential. Chemosphere, 32, 2269. Yu, S.C.T. (1995) Transport and Fate of Chlorinated Hydrocarbons in the Vadose Zone-A Literature Review with Discussions on Regulatory Implications. J. Soil Contam., 4, 25. Yu, Y.S.; Bailey, G.W.; and Jin, X.C. (1996) Application of a Lumped, Nonlinear Kinetics Model to Metal Sorption on Humic Substances. 1. Environ. Qual., 25, 552. Zaidel, J.; Russo, D.; and Feldman, G. (1996) Theoretical Analysis of the Impact of Vapor Transport on the NAPL Distribution in Dry Soils. Adv. Water Resour., 19, 145. Zegeling, P.A. (1996) Numerical Solution of Advection-Dispersion Models Using Dynamically-Moving Adaptive Grids. Computat. Methods Water Resour. XI, Cancun, Mex., Computational Mechanics Publications, Southampton, U.K., 1, 593. Zhang, D., and Zhang, Y.-K. (1996) Higher-Order Velocity Covariance and Its Effect on Advective Transport in Three-Dimensional Heterogeneous Anisotropic Media. Computat. Methods Water Resour. Xl, Cancun, Mex., Computational Mechanics Publications, Southampton, U.K., 1, 689. Zhang, D.X., and Neuman, S.P. (1996a) Head and Velocity Covariances Under Quasi-Steady State Flow and Their Effects on Advective Transport. Water Resour. Res., 32,77.}, number={4}, journal={WATER ENVIRONMENT RESEARCH}, author={Line, DE and Osmond, DL and Coffey, SW and McLaughlin, RA and Jennings, GD and Gale, JA and Spooner, J}, year={1997}, month={Jun}, pages={844–860} } @article{osmond_gannon_gale_line_knott_phillips_turner_foster_lehning_coffey_et al._1997, title={WATERSHEDSS: A decision support system for watershed-scale nonpoint source water quality problems}, volume={33}, ISSN={["0043-1370"]}, DOI={10.1111/j.1752-1688.1997.tb03513.x}, abstractNote={ABSTRACT: A significant portion of all pollutants entering surface waters (streams, lakes, estuaries, and wetlands) derives from non‐point source (NPS) pollution and, in particular, agricultural activities. The first step in restoring a water resource is to focus on the primary water quality problem in the watershed. The most appropriate NPS control measures, which include best management practices (BMPs) and landscape features, such as wetlands and riparian areas, can then be selected and positioned to minimize or mitigate the identified pollutant(s). A computer‐based decision sup. port and educational software system, WATERSHEDSS (WATER, Soil, and Hydro‐Environmental Decision Support System), has been developed to aid managers in defining their water quality problems and selecting appropriate NPS control measures. The three primary objectives of WATERSHEDSS are (1) to transfer water quality and land treatment information to watershed managers in order to assist them with appropriate land management/land treatment decisions; (2) to assess NPS pollution in a watershed based on user‐supplied information and decisions; and (3) to evaluate, through geographical information systems‐assisted modeling, the water quality effects of alternative land treatment scenarios. WATERSHEDSS is available on the World Wide Web (Web) at http://h2osparc.wq.ncsu.edu.}, number={2}, journal={JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION}, author={Osmond, DL and Gannon, RW and Gale, JA and Line, DE and Knott, CB and Phillips, KA and Turner, MH and Foster, MA and Lehning, DE and Coffey, SW and et al.}, year={1997}, month={Apr}, pages={327–341} }