Bruce J. Hinds Wolfe, D. M., Hinds, B. J., Wang, F., Lucovsky, G., Ward, B. L., Xu, M., … Maher, D. M. (1999). Thermochemical stability of silicon-oxygen-carbon alloy thin films: A model system for chemical and structural relaxation at SiC-SiO2 interfaces. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, Vol. 17, pp. 2170–2177. https://doi.org/10.1116/1.581745 Lucovsky, G., Koh, K., Chaflin, B., & Hinds, B. (1998, January). Interfacial sub-oxide regions at Si-SiO2 interfaces: minimization by post-oxidation rapid thermal anneal. APPLIED SURFACE SCIENCE, Vol. 123, pp. 490–495. https://doi.org/10.1016/S0169-4332(97)00528-X Hinds, B. J., Wang, F., Wolfe, D. M., Hinkle, C. L., & Lucovsky, G. (1998). Investigation of postoxidation thermal treatments of Si/SiO2 interface in relationship to the kinetics of amorphous Si suboxide decomposition. Journal of Vacuum Science & Technology. B, Microelectronics and Nanometer Structures, 16(4), 2171–2176. Hinds, B. J., Wang, F., Wolfe, D. M., Hinkle, C. L., & Lucovsky, G. (1998). Study of SiOx decomposition kinetics and formation of Si nanocrystals in an SiOx matrix. Journal of Non-Crystalline Solids, 230 (part A)(1998 May), 507–512. Lucovsky, G., Banerjee, A., Niimi, H., Koh, K., Hinds, B., Meyer, C., … Kurz, H. (1997, June). Elimination of sub-oxide transition regions at Si-SiO2 interfaces by rapid thermal annealing at 900 degrees C. APPLIED SURFACE SCIENCE, Vol. 117, pp. 202–206. https://doi.org/10.1016/S0169-4332(97)80079-7 Hinds, B. J., Aspenes, D. E., & Lucovsky, G. (1997). Low pH chemical etch route for smooth H-terminated Si(100) and study of subsequent chemical stability. Environmental, safety, and health issues in IC production: Symposium held December 4-5, 1996, Boston, Massachusetts, U.S.A. (Materials Research Society Symposium proceedings, no. 447), 191–196. Pittsburgh, PA: Materials Research Society. Lucovsky, G., Banerjee, A., Hinds, B., Claflin, B., Koh, K., & Yang, H. (1997, June). Minimization of sub-oxide transition regions at Si-SiO2 interfaces by 900 degrees C rapid thermal annealing. MICROELECTRONIC ENGINEERING, Vol. 36, pp. 207–210. https://doi.org/10.1016/s0167-9317(97)00049-x