@article{leenay_maksimchuk_slotkowski_agrawal_gomaa_briner_barrangou_beisel_2016, title={Identifying and Visualizing Functional PAM Diversity across CRISPR-Cas Systems}, volume={62}, ISSN={["1097-4164"]}, DOI={10.1016/j.molcel.2016.02.031}, abstractNote={CRISPR-Cas adaptive immune systems in prokaryotes boast a diversity of protein families and mechanisms of action, where most systems rely on protospacer-adjacent motifs (PAMs) for DNA target recognition. Here, we developed an in vivo, positive, and tunable screen termed PAM-SCANR (PAM screen achieved by NOT-gate repression) to elucidate functional PAMs as well as an interactive visualization scheme termed the PAM wheel to convey individual PAM sequences and their activities. PAM-SCANR and the PAM wheel identified known functional PAMs while revealing complex sequence-activity landscapes for the Bacillus halodurans I-C (Cascade), Escherichia coli I-E (Cascade), Streptococcus thermophilus II-A CRISPR1 (Cas9), and Francisella novicida V-A (Cpf1) systems. The PAM wheel was also readily applicable to existing high-throughput screens and garnered insights into SpyCas9 and SauCas9 PAM diversity. These tools offer powerful means of elucidating and visualizing functional PAMs toward accelerating our ability to understand and exploit the multitude of CRISPR-Cas systems in nature.}, number={1}, journal={MOLECULAR CELL}, publisher={Elsevier BV}, author={Leenay, Ryan T. and Maksimchuk, Kenneth R. and Slotkowski, Rebecca A. and Agrawal, Roma N. and Gomaa, Ahmed A. and Briner, Alexandra E. and Barrangou, Rodolphe and Beisel, Chase L.}, year={2016}, month={Apr}, pages={137–147} } @article{beisel_gomaa_barrangou_2014, title={A CRISPR design for next-generation antimicrobials}, volume={15}, ISSN={["1474-760X"]}, DOI={10.1186/s13059-014-0516-x}, abstractNote={Two recent publications have demonstrated how delivering CRISPR nucleases provides a promising solution to the growing problem of bacterial antibiotic resistance.}, number={11}, journal={GENOME BIOLOGY}, publisher={Springer Nature}, author={Beisel, Chase L. and Gomaa, Ahmed A. and Barrangou, Rodolphe}, year={2014} } @article{briner_donohoue_gomaa_selle_slorach_nye_haurwitz_beisel_may_barrangou_2014, title={Guide RNA Functional Modules Direct Cas9 Activity and Orthogonality}, volume={56}, ISSN={["1097-4164"]}, DOI={10.1016/j.molcel.2014.09.019}, abstractNote={The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies.}, number={2}, journal={MOLECULAR CELL}, publisher={Elsevier BV}, author={Briner, Alexandra E. and Donohoue, Paul D. and Gomaa, Ahmed A. and Selle, Kurt and Slorach, Euan M. and Nye, Christopher H. and Haurwitz, Rachel E. and Beisel, Chase L. and May, Andrew P. and Barrangou, Rodolphe}, year={2014}, month={Oct}, pages={333–339} }